ﻻ يوجد ملخص باللغة العربية
It has been recently found that the characteristic photometric parameters of antitruncated discs in S0 galaxies follow tight scaling relations. We investigate if similar scaling relations are satisfied by galaxies of other morphological types. We have analysed the trends in several photometric planes relating the characteristic surface brightness and scalelengths of the breaks and the inner and outer discs of local antitruncated S0-Scd galaxies, using published data and fits performed to the surface brightness profiles of two samples of Type-III galaxies in the R and Spitzer 3.6 microns bands. We have performed linear fits to the correlations followed by different galaxy types in each plane, as well as several statistical tests to determine their significance. We have found that: 1) the antitruncated discs of all galaxy types from Sa to Scd obey tight scaling relations both in R and 3.6 microns, as observed in S0s; 2) the majority of these correlations are significant accounting for the numbers of the available data samples; 3) the trends are clearly linear when the characteristic scalelengths are plotted on a logarithmic scale; and 4) the correlations relating the characteristic surface brightnesses of the inner and outer discs and the breaks with the various characteristic scalelengths significantly improve when the latter are normalized to the optical radius of the galaxy. The results suggest that the scaling relations of Type-III discs are independent of the morphological type and the presence (or absence) of bars within the observational uncertainties of the available datasets, although larger and deeper samples are required to confirm this. The tight structural coupling implied by these scaling relations impose strong constraints on the mechanisms proposed for explaining the formation of antitruncated stellar discs in the galaxies across the whole Hubble Sequence (Abridged).
Photometric scaling relations are studied for S0 galaxies and compared with those for spirals. New 2D K_s-band multi-component decompositions are presented for 122 early-type disk galaxies. Combining with our previous decompositions, the final sample
We present an analysis of V-band radial surface brightness {mu}(r) profiles for S0s in different environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). Using a sample of ~280 field and cluster S0
We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global HI line widths to TFRs derived from the circular velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulne
To understand the stellar population content of dwarf early-type galaxies (dEs) and its environmental dependence, we compare the slopes and intrinsic scatter of color-magnitude relations (CMRs) for three nearby clusters, Fornax, Virgo and Coma. Addit
We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical SDSS and NIR J & H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we o