ﻻ يوجد ملخص باللغة العربية
We use external magnetic field to probe the detection mechanism of superconducting nanowire single photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter $Delta$ across the whole width of the superconducting nanowire after absorption of the single photon) does not explain observed weak field dependence of the photon count rate (PCR) for photons with $lambda$=450 nm and noticeable {it decrease} of PCR (with increasing the magnetic field) in some range of the currents for photons with wavelengths $lambda$ =450-1200 nm. Found experimental results for all studied wavelengths $lambda = 450-1550$ nm could be explained by the vortex hot spot model (which assumes partial suppression of $Delta$ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed $Delta$.
We argue that photon counts in a superconducting nanowire single-photon detector (SNSPD) are caused by the transition from a current-biased metastable superconducting state to the normal state. Such a transition is triggered by vortices crossing the
We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 t
We argue that cutoff in the London model cannot be settled without use of the microscopic theory.
We investigate the detection efficiency of a spiral layout of a Superconducting Nanowire Single-Photon Detector (SNSPD). The design is less susceptible to the critical current reduction in sharp turns of the nanowire than the conventional meander des
We investigated the suitability of AlN as a buffer layer for NbN superconducting nanowire single-photon detectors (SNSPDs) on GaAs. The NbN films with a thickness of 3.3 nm to 20 nm deposited onto GaAs substrates with AlN buffer layer, demonstrate a