ترغب بنشر مسار تعليمي؟ اضغط هنا

Phosphorene: Synthesis, Scale-up, and Quantitative Optical Spectroscopy

103   0   0.0 ( 0 )
 نشر من قبل Scott Warren
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phosphorene, a two-dimensional (2D) monolayer of black phosphorus, has attracted considerable theoretical interest, although the experimental realization of monolayer, bilayer, and few-layer flakes has been a significant challenge. Here we systematically survey conditions for liquid exfoliation to achieve the first large-scale production of monolayer, bilayer, and few-layer phosphorus, with exfoliation demonstrated at the 10-gram scale. We describe a rapid approach for quantifying the thickness of 2D phosphorus and show that monolayer and few-layer flakes produced by our approach are crystalline and unoxidized, while air exposure leads to rapid oxidation and the production of acid. With large quantities of 2D phosphorus now available, we perform the first quantitative measurements of the materials absorption edge-which is nearly identical to the materials band gap under our experimental conditions-as a function of flake thickness. Our interpretation of the absorbance spectrum relies on an analytical method introduced in this work, allowing the accurate determination of the absorption edge in polydisperse samples of quantum-confined semiconductors. Using this method, we found that the band gap of black phosphorus increased from 0.33 +/- 0.02 eV in bulk to 1.88 +/- 0.24 eV in bilayers, a range that is larger than any other 2D material. In addition, we quantified a higher-energy optical transition (VB-1 to CB), which changes from 2.0 eV in bulk to 3.23 eV in bilayers. This work describes several methods for producing and analyzing 2D phosphorus while also yielding a class of 2D materials with unprecedented optoelectronic properties.



قيم البحث

اقرأ أيضاً

Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of opt ical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.
The engineering of the optical response of materials is a paradigm that demands microscopic-level accuracy and reliable predictive theoretical tools. Here we compare and contrast the dispersive permittivity tensor, using both a low-energy effective m odel and density functional theory (DFT). As a representative material, phosphorene subject to strain is considered. Employing a low-energy model Hamiltonian with a Greens function current-current correlation function, we compute the dynamical optical conductivity and its associated permittivity tensor. For the DFT approach, first-principles calculations make use of the first-order random-phase approximation. Our results reveal that although the two models are generally in agreement within the low-strain and low-frequency regime, the intricate features associated with the fundamental physical properties of the system and optoelectronic device implementation such as band gap, Drude absorption response, vanishing real part, absorptivity, and sign of permittivity over the frequency range show significant discrepancies. Our results suggest that the random-phase approximation employed in widely used DFT packages should be revisited and improved to be able to predict these fundamental electronic characteristics of a given material with confidence. Furthermore, employing the permittivity results from both models, we uncover the pivotal role that phosphorene can play in optoelectronics devices to facilitate highly programable perfect absorption of electromagnetic waves by manipulating the chemical potential and exerting strain and illustrate how reliable predictions for the dielectric response of a given material are crucial to precise device design.
169 - Shuang Zhou , Ji Wang , Yakui Weng 2016
A low temperature hydrothermal route has been developed, and pure phase Ba$_2$Ni$_3$F$_{10}$ nanowires have been successfully prepared under the optimized conditions. Under the 325 nm excitation, the Ba$_2$Ni$_3$F$_{10}$ nanowires exhibit three emiss ion bands with peak positions locating at 360 nm, 530 nm, and 700 nm, respectively. Combined with the first-principles calculations, the photoluminescence property can be explained by the electron transitions between the t2g and eg orbitals. Clear hysteresis loops observed below the temperature of 60 K demonstrates the weak ferromagnetism in Ba$_2$Ni$_3$F$_{10}$ nanowires, which has been attributed to the surface strain of nanowires. Exchange bias with blocking temperature of 55 K has been observed, which originates from the magnetization pinning under the cooling field due to antiferromagnetic core/weak ferromagnetic shell structure of Ba2Ni3F10 nanowires.
We systematically explore chemical functionalization of monolayer black phosphorene via chemisorption of oxygen and fluorine atoms. Using the cluster expansion technique, with vary- ing concentration of the adsorbate, we determine the ground states c onsidering both single- as well as double- side chemisorption, which have novel chemical and electronic properties. The nature of the bandgap depends on the concentration of the adsorbate: for fluorination the direct bandgap first decreases, and then increases while becoming indirect, with increasing fluorination, while for oxidation the bandgap first increases and then decreases, while mostly maintaining its direct nature. Further we find that the unique anisotropic free-carrier effective mass for both the electrons and holes, can be changed and even rotated by 90 degrees, with controlled chemisorption, which can be useful for exploring unusual quantum Hall effect, and novel electronic devices based on phosphorene.
Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively-powered electronic systems. The conversion efficiencies of such devices a re quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a devices electrical conductance to its thermal conductance. High ZT (>2) has been achieved in materials via all-scale hierarchical architecturing. This efficiency holds at high temperatures (700K~900K) but quickly diminishes at lower temperatures. In this paper, a recently-fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal that phosphorene possesses spatially-anisotropic electrical and thermal conductances. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT can reach 2.5 (the criterion for commercial deployment) along the armchair direction of phosphorene at T=500K and is greater than 1 even at room temperature given moderate doping (~2 x 10^16 m-2). Ultimately, phosphorene stands out as an environmentally sound thermoelectric material with unprecedented qualities: intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (~ 300K) - one whose performance does not require any sophisticated engineering techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا