ﻻ يوجد ملخص باللغة العربية
A global solution of the Schrodinger equation for explicitly time-dependent Hamiltonians is derived by integrating the non-linear differential equation associated with the time-dependent wave operator. A fast iterative solution method is proposed in which, however, numerous integrals over time have to be evaluated. This internal work is done using a numerical integrator based on Fast Fourier Transforms (FFT). The case of a transition between two potential wells of a model molecule driven by intense laser pulses is used as an illustrative example. This application reveals some interesting features of the integration technique. Each iteration provides a global approximate solution on grid points regularly distributed over the full time propagation interval. Inside the convergence radius, the complete integration is competitive with standard algorithms, especially when high accuracy is required.
A global solution of the Schrodinger equation, obtained recently within the wave operator formalism for explicitly time-dependent Hamiltonians [J. Phys. A: Math. Theor. 48, 225205 (2015)], is generalized to take into account the case of multidimensio
We present several methods, which utilize symplectic integration techniques based on two and three part operator splitting, for numerically solving the equations of motion of the disordered, discrete nonlinear Schrodinger (DDNLS) equation, and compar
We show that the stochastic Schrodinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to
Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of n
We show that a pseudospectral representation of the wavefunction using multiple spatial domains of variable size yields a highly accurate, yet efficient method to solve the time-dependent Schrodinger equation. The overall spatial domain is split into