ﻻ يوجد ملخص باللغة العربية
Using hydrodynamical simulations, we show for the first time that an episode of star formation in the center of the Milky Way, with a star-formation-rate (SFR) $sim 0.5$ M$_odot$ yr$^{-1}$ for $sim 30$ Myr, can produce bubbles that resemble the Fermi Bubbles (FBs), when viewed from the solar position. The morphology, extent and multi-wavelength observations of FBs, especially X-rays, constrain various physical parameters such as SFR, age, and the circum-galactic medium (CGM) density. We show that the interaction of the CGM with the Galactic wind driven by a star formation in the central region can explain the observed surface brightness and morphological features of X-rays associated with the Fermi Bubbles. Furthermore, assuming that cosmic ray electrons are accelerated {it in situ} by shocks and/or turbulence, the brightness and morphology of gamma-ray emission and the microwave haze can be explained. The kinematics of the cold and warm clumps in our model also matches with recent observations of absorption lines through the bubbles.
There are two spectacular structures in our Milky Way: the {it Fermi} bubbles in gamma-ray observations and the North Polar Spur (NPS) structure in X-ray observations. Because of their morphological similarities, they may share the same origin, i.e.,
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the
Initial results are presented from 3D MHD modelling of stellar-wind bubbles around O stars moving supersonically through the ISM. We describe algorithm updates that enable high-resolution 3D MHD simulations at reasonable computational cost. We apply
We investigate roles of magnetic activity in the Galactic bulge region in driving large-scale outflows of size $sim 10$ kpc. Magnetic buoyancy and breakups of channel flows formed by magnetorotational instability excite Poynting flux by the magnetic
In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty