ترغب بنشر مسار تعليمي؟ اضغط هنا

230 GHz VLBI observations of M87: event-horizon-scale structure at the enhanced very-high-energy $rm gamma$-ray state in 2012

146   0   0.0 ( 0 )
 نشر من قبل Kazunori Akiyama
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0$^{circ}$ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is $sim 1 times 10^{10}$ K derived from the compact flux density of $sim 1$ Jy and the angular size of $sim 40 $ $rm mu$as $sim$ 5.5 $R_{{rm s}}$, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within $sim 10^2$ $R_{{rm s}}$. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) $rm gamma$-ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of $sim$20-60 $R_{{rm s}}$.



قيم البحث

اقرأ أيضاً

We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties for the jet base (the radio core) and the peculiar knot HST-1, which are currently favored as the gamma-ray emitting sites. During the VHE flaring event, the HST-1 region remains stable in terms of its structure and flux density in the optically thin regime above 2GHz, being consistent with no signs of enhanced activities reported at X-ray for this feature. The radio core shows an inverted spectrum at least up to 43GHz during this event. Astrometry of the core position, which is specified as ~20Rs from the central engine in our previous study, shows that the core position is stable on a level of 4Rs. The core at 43 and 22GHz tends to show slightly (~10%) higher flux level near the date of the VHE flux peak compared with the epochs before/after the event. The size of the 43-GHz core is estimated to be ~17Rs, which is close to the size of the emitting region suggested from the observed time scale of rapid variability at VHE. These results tend to favor the scenario that the VHE gamma-ray flare in 2010 April is associated with the radio core.
126 - K. Hada , M. Giroletti , M. Kino 2014
We report our intensive radio monitoring observations of the jet in M87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray l ight curves obtained by the Fermi-LAT. During this period, an elevated level of the M87 flux is reported at VHE gamma rays. We detected a remarkable increase of the radio flux density from the unresolved jet base (radio core) with VERA at 22 and 43GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5GHz that HST-1 (an alternative gamma-ray production candidate site) remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE gamma-ray activity in 2012 originates in the jet base within 0.03pc or 56 Schwarzschild radii from the central supermassive black hole. We further conducted VERA astrometry for the M87 core during the flaring period, and detected core shifts between 22 and 43GHz. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22 and 5GHz; the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43GHz. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining these results, we estimated an apparent speed of the newborn component, and derived a sub-luminal speed of less than ~0.2c. This value is significantly slower than the super-luminal (~1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that the stronger VHE activity can be associated with the production of the higher Lorentz factor jet.
107 - K. Hada , M. Giroletti , M. Kino 2014
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elus ive. Based on previous radio/TeV correlation events, the unresolved jet base (radio core) and the peculiar knot HST-1 at >120 pc from the nucleus are proposed as candidate site(s) of gamma-ray production. Here we report our intensive, high-resolution radio monitoring observations of the M87 jet with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012. During this period, an elevated level of the M87 flux is reported at TeV with VERITAS. We detected a remarkable flux increase in the radio core with VERA at 22/43 GHz coincident with the VHE activity. Meanwhile, HST-1 remained quiescent in terms of its flux density and structure at radio. These results strongly suggest that the TeV gamma-ray activity in 2012 originates in the jet base within 0.03 pc (projected) from the central supermassive black hole.
Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma pr operties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_e of order 10^4-7 cm-3, magnetic field strength B of order 1-30 G, and electron temperature Te of order (1-12) x 10^10 K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10^-4 Msun yr-1.
The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermas sive black hole, cosmic rays from a nearby supernova remnant (e.g. SgrA East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significance by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above ~2.5TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا