ﻻ يوجد ملخص باللغة العربية
In the context of a locally risk-minimizing approach, the problem of hedging defaultable claims and their Follmer-Schweizer decompositions are discussed in a structural model. This is done when the underlying process is a finite variation Levy process and the claims pay a predetermined payout at maturity, contingent on no prior default. More precisely, in this particular framework, the locally risk-minimizing approach is carried out when the underlying process has jumps, the derivative is linked to a default event, and the probability measure is not necessarily risk-neutral.
We consider an incomplete multi-asset binomial market model. We prove that for a wide class of contingent claims the extremal multi-step martingale measure is a power of the corresponding single-step extremal martingale measure. This allows for close
We discuss the difference between locally risk-minimizing and delta hedging strategies for exponential Levy models, where delta hedging strategies in this paper are defined under the minimal martingale measure. We give firstly model-independent upper
With model uncertainty characterized by a convex, possibly non-dominated set of probability measures, the agent minimizes the cost of hedging a path dependent contingent claim with given expected success ratio, in a discrete-time, semi-static market
This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth,
This paper studies the valuation of European contingent claims with short selling bans under the equal risk pricing (ERP) framework proposed in Guo and Zhu (2017) where analytical pricing formulae were derived in the case of monotonic payoffs under r