ﻻ يوجد ملخص باللغة العربية
The nearby active galaxy NGC 1275, has widely been detected from radio to gamma rays. Its spectral energy distribution (SED) shows a double-peak feature, which is well explained by synchrotron self-Compton (SSC) model. However, recent TeV detections might suggest that very-high-energy $gamma$-rays (E$geq$100 GeV) may not have a leptonic origin. We test a lepto-hadronic model to describe the whole SED through SSC emission and neutral pion decay resulting from p$gamma$ interactions. Also, we estimate the neutrino events expected in a Km$^3$ Cherenkov telescope.
IceCube has observed an excess of neutrino events over expectations from the isotropic background from the direction of NGC 1068. The excess is inconsistent with background expectations at the level of $2.9sigma$ after accounting for statistical tria
Recently reported coincidences between high-energy neutrino events and major blazar outbursts reinforce the relevance of lepto-hadronic emission models for blazars. We study the influence of physical parameters on the neutrino output modeling blazar
We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6
The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) gamma-ray emitter by MAGIC, is one of the few non-blazar AGN detected in the VHE regime. In order to better understand the origin of the gamma-ray emission and locat
High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV s