ﻻ يوجد ملخص باللغة العربية
Electrodynamic properties of La-doped SrTiO3 thin films with controlled elemental vacancies have been investigated using optical spectroscopy and thermopower measurement. In particular, we observed a correlation between the polaron formation and thermoelectric properties of the transition metal oxide (TMO) thin films. With decreasing oxygen partial pressure during the film growth (P(O2)), a systematic lattice expansion was observed along with the increased elemental vacancy and carrier density, experimentally determined using optical spectroscopy. Moreover, we observed an absorption in the mid-infrared photon energy range, which is attributed to the polaron formation in the doped SrTiO3 system. Thermopower of the La-doped SrTiO3 thin films could be largely modulated from -120 to -260 {mu}V K-1, reflecting an enhanced polaronic mass of ~3 < mpolron/m < ~4. The elemental vacancies generated in the TMO films grown at various P(O2) influences the global polaronic transport, which governs the charge transport behavior, including the thermoelectric properties.
BaSnO_{3}, a high mobility perovskite oxide, is an attractive material for oxide-based electronic devices. However, in addition to low-field mobility, high-field transport properties such as the saturation velocity of carriers play a major role in de
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance
High-quality thermoelectric LaxSr1-xTiO3 (LSTO) layers (here with x = 0.2), with thicknesses ranging from 20 nm to 700 nm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atom
We report a dielectric relaxation in ferroelectric thin films of the ABO3 family. We have compared films of different compositions with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogeni
Room temperature ferromagnetism was observed in n-type Fe-doped In2O3 thin films deposited on c-cut sapphire substrates by pulsed laser deposition. Structure, magnetism, composition, and transport studies indicated that Fe occupied the In sites of th