ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport evidence for Fermi-arc mediated chirality transfer in the Dirac semimetal Cd$_3$As$_2$

131   0   0.0 ( 0 )
 نشر من قبل Andrew Potter
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is expected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called Fermi Arcs. Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd$_3$As$_2$. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming Weyl orbits. In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.



قيم البحث

اقرأ أيضاً

110 - Y. K. Song , G. W. Wang , S. C. Li 2019
Topological nodal-line semimetals with exotic quantum properties are characterized by symmetry-protected line-contact bulk band crossings in the momentum space. However, in most of identified topological nodal-line compounds, these topological non-tr ivial nodal lines are enclosed by complicated topological trivial states at the Fermi energy ($E_F$), which would perplex their identification and hinder further applications. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, we provide compelling evidence for the existence of Dirac nodal-line fermions in the monoclinic semimetal SrAs$_3$, which are close to $E_F$ and away from distraction of complex trivial Fermi surfaces or surface states. Our calculation indicates that two bands with opposite parity are inverted around emph{Y} near $E_F$, which results in the single nodal loop at the $Gamma$-emph{Y}-emph{S} plane with a negligible spin-orbit coupling effect. We track these band crossings and then unambiguously identify the complete nodal loop quantitatively, which provides a critical experimental support to the prediction of nodal-line fermions in the CaP$_3$ family of materials. Hosting simple topological non-trivial bulk electronic states around $E_F$ and no interfering with surface states on the natural cleavage plane, SrAs$_3$ is expected to be a potential platform for topological quantum state investigation and applications.
In topological Weyl semimetals, the low energy excitations are comprised of linearly dispersing Weyl fermions, which act as monopoles of Berry curvature in momentum space and result in topologically protected Fermi arcs on the surfaces. We propose th at these Fermi arcs in Weyl semimetals lead to an anisotropic magnetothermal conductivity, strongly dependent on externally applied magnetic field and resulting from entropy transport driven by circulating electronic currents. The circulating currents result in no net charge transport, but they do result in a net entropy transport. This translates into a magnetothermal conductivity that should be a unique experimental signature for the existence of the arcs. We analytically calculate the Fermi arc-mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultra-quantum limit, where only the chiral Landau levels are involved. By numerically including the effects of higher Landau levels, we show how the two limits are linked at intermediate magnetic fields. This work provides the first proposed signature of Fermi arc-mediated thermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in experimental thermal applications.
A van der Waals coupled Weyl semimetal material NbIrTe4 is investigated by combining scanning tunneling microscopy/spectroscopy and first principles calculations. We observe a sharp peak in the tunneling conductance near the zero bias energy, and its origin is ascribed to a van Hove singularity associated with a Lifshitz transition of the topologically none trivial Fermi arc states. Furthermore, tunneling spectroscopy measurements show a surprisingly large signature of electron boson coupling, which presumably represents anomalously enhanced electron phonon coupling through the enhanced charge susceptibility. Our finding in van der Waals coupled material is particularly invaluable due to applicable exfoliation technology for searching exotic topological states by further manipulating near Fermi energy van Hove singularity in nanometer scale flakes and their devices.
Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produc ed via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investigated in the extreme ultraviolet and soft X-ray regions, forming the basis of attosecond research. In solid-state materials, which are characterized by crystalline symmetry and strong interactions, yielding of harmonics has just recently been reported. The observed high-harmonic generation was interpreted with fundamentally different mechanisms, such as interband tunneling combined with dynamical Bloch oscillations, intraband thermodynamics and nonlinear dynamics, and many-body electronic interactions. Here, in a distinctly different context of three-dimensional Dirac semimetal, we report on experimental observation of high-harmonic generation up to the seventh order driven by strong-field terahertz pulses. The observed non-perturbative high-harmonic generation is interpreted as a generic feature of terahertz-field driven nonlinear intraband kinetics of Dirac fermions. We anticipate that our results will trigger great interest in detection, manipulation, and coherent control of the nonlinear response in the vast family of three-dimensional Dirac and Weyl materials.
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohms law. Depending on the length scales of momentum conserving ($l_{MC}$) and relaxing ($l_{MR}$) electron scattering, and the device si ze ($d$), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain $l_{MR}$ in micro-devices even when $l_{MR}gg d$. This gives information on the bulk $l_{MR}$ complementary to quantum oscillations, which are sensitive to all scattering processes. We extract $l_{MR}$ from the Sondheimer amplitude in the topological semi-metal WP$_2$, at elevated temperatures up to $Tsim 50$~K, in a range most relevant for hydrodynamic transport phenomena. Our data on micrometer-sized devices are in excellent agreement with experimental reports of the large bulk $l_{MR}$ and thus confirm that WP$_2$ can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP$_2$ at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of $l_{MR}$ in micro-devices in studying non-ohmic electron flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا