ترغب بنشر مسار تعليمي؟ اضغط هنا

Distorted cyclotron line profile in Cep X-4 as observed by NuSTAR

111   0   0.0 ( 0 )
 نشر من قبل Felix Fuerst
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Fuerst




اسأل ChatGPT حول البحث

We present spectral analysis of NuSTAR and Swift observations of Cep X-4 during its outburst in 2014. We observed the source once during the peak of the outburst and once during the decay, finding good agreement in the spectral shape between the observations. We describe the continuum using a powerlaw with a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to describe the shape of the CRSF accurately, leaving significant deviations at the red side of the line. We characterize this asymmetry with a second absorption feature around 19 keV. The line energy of the CRSF, which is not influenced by the addition of this feature, shows a small but significant positive luminosity dependence. With luminosities between (1-6)e36 erg/s, Cep X-4 is below the theoretical limit where such a correlation is expected. This behavior is similar to Vela X-1 and we discuss parallels between the two systems.



قيم البحث

اقرأ أيضاً

128 - Felix Fuerst 2013
Her X-1, one of the brightest and best studied X-ray binaries, shows a cyclotron resonant scattering feature (CRSF) near 37 keV. This makes it an ideal target for detailed study with the Nuclear Spectroscopic Telescope Array (NuSTAR), taking advantag e of its excellent hard X-ray spectral resolution. We observed Her X-1 three times, coordinated with Suzaku, during one of the high flux intervals of its 35d super-orbital period. This paper focuses on the shape and evolution of the hard X-ray spectrum. The broad-band spectra can be fitted with a powerlaw with a high-energy cutoff, an iron line, and a CRSF. We find that the CRSF has a very smooth and symmetric shape, in all observations and at all pulse-phases. We compare the residuals of a line with a Gaussian optical depth profile to a Lorentzian optical depth profile and find no significant differences, strongly constraining the very smooth shape of the line. Even though the line energy changes dramatically with pulse phase, we find that its smooth shape does not. Additionally, our data show that the continuum is only changing marginally between the three observations. These changes can be explained with varying amounts of Thomson scattering in the hot corona of the accretion disk. The average, luminosity-corrected CRSF energy is lower than in past observations and follows a secular decline. The excellent data quality of NuSTAR provides the best constraint on the CRSF energy to date.
X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In particular, the hardness of the X-ray continuum is found to depend on luminosity. In a few sources, the correlation between the energy of the cyclotron resonance scattering feature (CRSF) and the luminosity is clear. Different types (signs) of the correlation are believed to reflect different accretion modes. We analyse two NuSTAR observations of the transient accreting pulsar Cep X-4 during its 2014 outburst. Our analysis is focused on a detailed investigation of the dependence of the CRSF energy and of the spectral hardness on X-ray luminosity, especially on short timescales. To investigate the spectral changes as a function of luminosity within each of the two observations, we used the intrinsic variability of the source on the timescale of individual pulse cycles (tens of seconds), the so-called pulse-to-pulse variability. We find that the NuSTAR spectrum of Cep X-4 contains two CRSFs: the fundamental line at ~30 keV and its harmonic at ~55 keV. We find for the first time that the energy of the fundamental CRSF increases and the continuum becomes harder with increasing X-ray luminosity not only between the two observations, that is, on the long timescale, but also within an individual observation, on the timescale of a few tens of seconds. We investigate these dependencies in detail including their non-linearity. We discuss a possible physical interpretation of the observed behaviour in the frame of a simple one-dimensional model of the polar emitting region with a collisionless shock formed in the infalling plasma near the neutron star surface. With this model, we are able to reproduce the observed variations of the continuum hardness ratio and of the CRSF energy with luminosity.
We present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and sp ectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (>10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of tau_Thomson ~ 2.9, and a global covering factor for the circumnuclear gas of ~ 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200-300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ~0.1-0.3 lambda_Edd depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L_Edd values for obscured AGNs.
372 - Felix Fuerst 2013
We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux le vels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.
101 - G. C. Xiao 2019
The long-term evolution of the centroid energy of the CRSF in Her X-1 is still a mystery. We report a new measurement from a campaign between {sl Insight}-HXMT and {sl NuSTAR} performed in February 2018. Generally, the two satellites show well consis tent results of timing and spectral properties. The joint spectral analysis confirms that the previously observed long decay phase has ended, and that the line energy instead keeps constant around 37.5 keV after flux correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا