ﻻ يوجد ملخص باللغة العربية
We have grown single crystals of Na$_x$Ca$_y$CoO$_2$ and determined their superstructures as a function of composition using neutron and x-ray diffraction. Inclusion of Ca$^{2+}$ stabilises a single superstructure across a wide range of temperatures and concentrations. The superstructure in the Na$^+$ layers is based on arrays of divacancy clusters with Ca$^{2+}$ ions occupying the central site, and it has an ideal concentration Na$_{4/7}$Ca$_{1/7}$CoO$_2$. Previous measurements of the thermoelectric properties on this system are discussed in light of this superstructure. Na$_{4/7}$Ca$_{1/7}$CoO$_2$ corresponds to the maximum in thermoelectric performance of this system.
NaxCoO2 has emerged as a material of exceptional scientific interest due to the potential for thermoelectric applications, and because the strong interplay between the magnetic and superconducting properties has led to close comparisons with the phys
We have studied the temperature dependence of the conductivity of a silicon MOSFET containing sodium ions in the oxide above 20 K. We find the impurity band resulting from the presence of charges at the silicon-oxide interface is split into a lower a
In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single cryst
We report measurements of the temperature-dependent conductivity in a silicon metal-oxide-semiconductor field-effect transistor that contains sodium impurities in the oxide layer. We explain the variation of conductivity in terms of Coulomb interacti
Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical