ﻻ يوجد ملخص باللغة العربية
In this contribution we consider sequences of monic polynomials orthogonal with respect to the standard Freud-like inner product involving a quartic potential $leftlangle p,qrightrangle_{M}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}+2tx^{2}}dx+Mp(0)q(0).$ We analyze some properties of these polynomials, such as the ladder operators and the holonomic equation that they satisfy and, as an application, we give an electrostatic interpretation of their zero distribution in terms of a logarithmic potential interaction under the action of an external field. It is also shown that the coefficients of their three term recurrence relation satisfy a nonlinear difference string equation. Finally, an equation of motion for their zeros in terms of their dependence on $t$ is given.
In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product begin{equation*} leftlangle p,qrightrangle _{s}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}}dx+M_{0}p(0)q(0)+M_{1}p^{prime }(0)q^{pr
Let ${bf P}_k^{(alpha, beta)} (x)$ be an orthonormal Jacobi polynomial of degree $k.$ We will establish the following inequality begin{equation*} max_{x in [delta_{-1},delta_1]}sqrt{(x- delta_{-1})(delta_1-x)} (1-x)^{alpha}(1+x)^{beta} ({bf P}_{k}^{(
The velocity potential in the Kelvin ship-wave source can be partly expressed in terms of space derivatives of the single integral [F(x,rho,alpha)=int_{-infty}^infty exp,[-frac{1}{2}rho cosh (2u-ialpha)] cos (xcosh u),du,] where $(x, rho, alpha)$ are
We study the bilinear Hilbert transform and bilinear maximal functions associated to polynomial curves and obtain uniform $L^r$ estimates for $r>frac{d-1}{d}$ and this index is sharp up to the end point.
Let $M = mathbb R^m sharp mathcal R^n$ be a non-doubling manifold with two ends $mathbb R^m sharp mathcal R^n$, $m > n ge 3$. Let $Delta$ be the Laplace--Beltrami operator which is non-negative self-adjoint on $L^2(M)$. Then $Delta$ and its square ro