ترغب بنشر مسار تعليمي؟ اضغط هنا

Polysymplectic Hamiltonian Field Theory

190   0   0.0 ( 0 )
 نشر من قبل Gennady Sardanashvily
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Sardanashvily




اسأل ChatGPT حول البحث

Applied to field theory, the familiar symplectic technique leads to instantaneous Hamiltonian formalism on an infinite-dimensional phase space. A true Hamiltonian partner of first order Lagrangian theory on fibre bundles $Yto X$ is covariant Hamiltonian formalism in different variants, where momenta correspond to derivatives of fields relative to all coordinates on $X$. We follow polysymplectic (PS) Hamiltonian formalism on a Legendre bundle over $Y$ provided with a polysymplectic $TX$-valued form. If $X=mathbb R$, this is a case of time-dependent non-relativistic mechanics. PS Hamiltonian formalism is equivalent to the Lagrangian one if Lagrangians are hyperregular. A non-regular Lagrangian however leads to constraints and requires a set of associated Hamiltonians. We state comprehensive relations between Lagrangian and PS Hamiltonian theories in a case of semiregular and almost regular Lagrangians. Quadratic Lagrangian and PS Hamiltonian systems, e.g. Yang - Mills gauge theory are studied in detail. Quantum PS Hamiltonian field theory can be developed in the frameworks both of familiar functional integral quantization and quantization of the PS bracket.



قيم البحث

اقرأ أيضاً

A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noethers theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations.
We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takenss index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko-Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.
This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dim ension along with a preliminary scattering result for convolution-type perturbations. This work complements the results obtained in [DL] by providing a detailed analysis of the perturbation theory for the one-dimensional thermal Hamiltonian. In more detail the following result are established: the regularity and decay properties for elements in the domain of the unperturbed thermal Hamiltonian; the determination of a class of self-adjoint and relatively compact perturbations of the thermal Hamiltonian; the proof of the existence and completeness of wave operators for a subclass of such potentials.
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.
171 - Danilo Bruno 2010
The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the in itial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا