ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic, electrical and thermodynamic properties of NpIr: ambient and high pressure measurements, and electronic structure calculations

147   0   0.0 ( 0 )
 نشر من قبل Helen Walker
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase diagram, which is isostructural to the non-centrosymmetric pressure-induced ferromagnetic superconductor UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity measurements have been performed for temperature T = 0.55 - 300 K, in a range of magnetic fields up to 14 T and under pressures up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at temperatures above 300 K.



قيم البحث

اقرأ أيضاً

We present an extensive study of the structural, magnetic and thermodynamic properties of high-quality monocrystals of the two heterometallic oxyborates from the ludwigite family: Cu$_2$GaBO$_5$ and Cu$_2$AlBO$_5$ in the temperature range above 2 K. The distinctive feature of the investigated structures is the selective distribution of Cu and Ga/Al cations. The unit cell of Cu$_2$GaBO$_5$ and Cu$_2$AlBO$_5$ contains four nonequivalent crystallographic sites of metal ions. Two sites in the structure from four nonequivalent crystallographic sites of metal ions of Cu$_2$GaBO$_5$ are fully occupied by Cu atoms which form the quasi one-dimensional chains along the a-axis. For Cu$_2$AlBO$_5$ all sites are partially occupied by Al and Cu atoms. The joint analysis of low-temperature data on magnetic susceptibility and magnetic contribution to the specific heat showed that Cu$_2$AlBO$_5$ and Cu$_2$GaBO$_5$ exhibit an antiferromagnetic transition at $T_{rm N} approx 3$ and 4 K, respectively. The magnetic contributions to the specific heat for both compounds were obtained after subtracting the phonon contribution. It is shown that the external magnetic field above 2.5 T leads to a broadening of the magnetic phase transition indicating suppression of the long-range antiferromagnetic order.
68 - M. K. Hooda , C. S. Yadav 2017
We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m* ~ 8me) in the metallic state indicate the narrow character of the 3d band. The electric conduction at low temperatures (T = 2 - 20 K) is governed by the variable range hopping of the charge carriers.
We have performed high-pressure, electrical resistivity, and specific heat measurements on CeTe3 single crystals. Two magnetic phases with nonparallel magnetic easy axes were detected in electrical resistivity and specific heat at low temperatures. W e also observed the emergence of an additional phase at high pressures and low temperatures and a possible structural phase transition detected at room temperature and at 45 kbar, which can possibly be related with the lowering of the charge-density wave transition temperature known for this compound.
179 - S. Widmann , A. Gunther , E. Ruff 2016
The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below about 14 K. In addition to this orbitally driven ferroelectricity, lacunar spinels are an inte resting material class, as the vanadium ions form V4 clusters representing stable molecular entities with a common electron distribution and a well-defined level scheme of molecular states resulting in a unique spin state per V4 molecule. Here we report detailed x-ray, magnetic susceptibility, electrical resistivity, heat capacity, thermal expansion, and dielectric results to characterize the structural, electric, dielectric, magnetic, and thermodynamic properties of this interesting material, which also exhibits strong electronic correlations. From the magnetic susceptibility, we determine a negative Curie-Weiss temperature, indicative for antiferromagnetic exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular clusters. The low-temperature heat capacity provides experimental evidence for gapped magnon excitations. From the entropy release, we conclude about strong correlations between magnetic order and lattice distortions. In addition, the observed anomalies at the phase transitions also indicate strong coupling between structural and electronic degrees of freedom. Utilizing dielectric spectroscopy, we find the onset of significant dispersion effects at the polar Jahn-Teller transition. The dispersion becomes fully suppressed again with the onset of spin order. In addition, the temperature dependencies of dielectric constant and specific heat possibly indicate a sequential appearance of orbital and polar order.
163 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا