ﻻ يوجد ملخص باللغة العربية
In the present work, we theoretically study the nonlinear regime of charge transport through a quantum dot coupled to the source and drain reservoirs. The investigation is carried out using a nonequilibrium Greens functions formalism beyond the Hartree-Fock approximation. Employed approximations for the relevant Greens functions allow to trace a transition from Coulomb blockade regime to Kondo regime in the thermoelectric transport. Effects arising when electrons move in response to thermal gradient applied across the system are discussed, including experimentally observed thermovoltage zeros.
We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect) or energy flows in reaction to volt
In this work we theoretically study properties of electric current driven by a temperature gradient through a quantum dot/molecule coupled to the source and drain charge reservoirs. We analyze the effect of Coulomb interactions between electrons on t
We study the linear and nonlinear thermovoltage of a quantum dot with effective attractive electron-electron interaction and weak, energy-dependent tunnel-coupling to electronic contacts. Remarkably, we find that the thermovoltage shows signatures of
We analyze the heat current flowing across interacting quantum dots within the Coulomb blockade regime. Power can be generated by either voltage or temperature biases. In the former case, we find nonlinear contributions to the Peltier effect that are
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be