ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the top-quark mass in the ${tbar{t}}$ dilepton channel using the full CDF Run II data set

255   0   0.0 ( 0 )
 نشر من قبل Gueorgui Velev
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run~II at center-of-mass energy $sqrt{s} = 1.96$ TeV, corresponding to an integrated luminosity of 9.1 fb$^{-1}$. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of ${tbar{t}}$ dilepton signal and background.We measure a value for the top-quark mass of $171.5pm 1.9~{rm (stat)}pm 2.5~{rm (syst)}$ GeV/$c^2$.



قيم البحث

اقرأ أيضاً

The top-quark mass M_top is measured using top quark-antiquark pairs produced in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV and decaying into a fully hadronic final state. The full data set collected with the CDFII detector a t the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 9.3 fb-1, is used. Events are selected that have six to eight jets, at least one of which is identified as having originated from a b quark. In addition, a multivariate algorithm, containing multiple kinematic variables as inputs, is used to discriminate signal events from background events due to QCD multijet production. Templates for the reconstructed top-quark mass are combined in a likelihood fit to measure M_top with a simultaneous calibration of the jet-energy scale. A value of M_top = 175.07+- 1.19(stat)+1.55-1.58(syst) GeV/c^2 is obtained for the top-quark mass.
We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $sqrt{s} = 1.96~mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{text{FB}}^{tbar{t}} = 0.12 pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{text{FB}}^{tbar{t}}$ in both final states yields $A_{text{FB}}^{tbar{t}}=0.160pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $Delta y$. A linear fit to $A_{text{FB}}^{tbar{t}}(|Delta y|)$, assuming zero asymmetry at $Delta y=0$, yields a slope of $alpha=0.14pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{text{FB}}^{tbar{t}}(|Delta y|)$ in the two final states is $alpha=0.227pm0.057$, which is $2.0sigma$ larger than the SM prediction.
We present a measurement of the ratio of the top-quark branching fractions $R=mathcal{B}(trightarrow Wb)/mathcal{B}(trightarrow $ $q$ represents quarks of flavors $b$, $s$, or $d$, in the final state, in events with two charged leptons, missing trans verse energy and at least two jets. The measurement uses $sqrt{s}$ = 1.96 TeV proton--antiproton collision data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ and collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure $R=0.87 pm 0.07$ (stat+syst), and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, $left|V_{tb}right| = 0.93 pm 0.04$ (stat+syst) assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}|>0.85$ at 95% credibility level is set.
The first search for single top quark production from the exchange of an $s$-channel virtual $W$ boson using events with an imbalance in the total transverse momentum, $b$-tagged jets, and no identified leptons is presented. The full data set collect ed by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.45 fb$^{-1}$ from Fermilab Tevatron proton-antiproton collisions at a center of mass energy of 1.96 TeV, is used. Assuming the electroweak production of top quarks of mass 172.5 GeV/$c^2$ in the $s$-channel, a cross section of $1.12_{-0.57}^{+0.61}$ (stat+syst) pb, with a significance of 1.9 standard deviations, is measured. This measurement is combined with a previous result obtained from events with an imbalance in total transverse momentum, $b$-tagged jets, and exactly one identified lepton, yielding a cross section of $1.36_{-0.32}^{+0.37}$ (stat+syst) pb, with a significance of 4.2 standard deviations.
We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا