ترغب بنشر مسار تعليمي؟ اضغط هنا

Free-space quantum key distribution to a moving receiver

123   0   0.0 ( 0 )
 نشر من قبل Jean-Philippe Bourgoin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s.



قيم البحث

اقرأ أيضاً

The ability of an eavesdropper (Eve) to perform an intercept-resend attack on a free-space quantum key distribution (QKD) receiver by precisely controlling the incidence angle of an attack laser has been previously demonstrated. However, such an atta ck could be ineffective in the presence of atmospheric turbulence due to beam wander and spatial mode aberrations induced by the airs varying index of refraction. We experimentally investigate the impact turbulence has on Eves attack on a free-space polarization-encoding QKD receiver by emulating atmospheric turbulence with a spatial light modulator. Our results identify how well Eve would need to compensate for turbulence to perform a successful attack by either reducing her distance to the receiver, or using beam wavefront correction via adaptive optics. Furthermore, we use an entanglement-breaking scheme to find a theoretical limit on the turbulence strength that hinders Eves attack.
A working free-space quantum key distribution (QKD) system has been developed and tested over a 205-m indoor optical path at Los Alamos National Laboratory under fluorescent lighting conditions. Results show that free-space QKD can provide secure rea l-time key distribution between parties who have a need to communicate secretly.
Satellite-based quantum terminals are a feasible way to extend the reach of quantum communication protocols such as quantum key distribution (QKD) to the global scale. To that end, prior demonstrations have shown QKD transmissions from airborne platf orms to receivers on ground, but none have shown QKD transmissions from ground to a moving aircraft, the latter scenario having simplicity and flexibility advantages for a hypothetical satellite. Here, we demonstrate QKD from a ground transmitter to a receiver prototype mounted on an airplane in flight. We have specifically designed our receiver prototype to consist of many components that are compatible with the environment and resource constraints of a satellite. Coupled with our relocatable ground station system, optical links with distances of 3-10 km were maintained and quantum signals transmitted while traversing angular rates similar to those observed of low-Earth-orbit satellites. For some passes of the aircraft over the ground station, links were established within 10 s of position data transmission, and with link times of a few minutes and received quantum bit error rates typically 3-5%, we generated secure keys up to 868 kb in length. By successfully generating secure keys over several different pass configurations, we demonstrate the viability of technology that constitutes a quantum receiver satellite payload and provide a blueprint for future satellite missions to build upon.
Based on the firm laws of physics rather than unproven foundations of mathematical complexity, quantum cryptography provides a radically different solution for encryption and promises unconditional security. Quantum cryptography systems are typically built between two nodes connected to each other through fiber optic. This chapter focuses on quantum cryptography systems operating over free-space optical channels as a cost-effective and license-free alternative to fiber optic counterparts. It provides an overview of the different parts of an experimental free-space quantum communication link developed in the Spanish National Research Council (Madrid, Spain).
A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distri bution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا