ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence in Classification via Cooperative Game Theory

152   0   0.0 ( 0 )
 نشر من قبل Yair Zick Dr.
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A dataset has been classified by some unknown classifier into two types of points. What were the most important factors in determining the classification outcome? In this work, we employ an axiomatic approach in order to uniquely characterize an influence measure: a function that, given a set of classified points, outputs a value for each feature corresponding to its influence in determining the classification outcome. We show that our influence measure takes on an intuitive form when the unknown classifier is linear. Finally, we employ our influence measure in order to analyze the effects of user profiling on Googles online display advertising.



قيم البحث

اقرأ أيضاً

In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperativ ely detect the primary user (PU) activity for identifying and accessing unoccupied spectrum bands. The games are designed to be balanced and super-additive so that resource allocation is possible and provides SUs with an incentive to cooperate and form the grand coalition. The characteristic function of the game is derived based on the worths of SUs, calculated according to the amount of work done for the coalition in terms of reduction in uncertainty about PU activity. According to her worth in the coalition, each SU gets a pay-off that is computed using various one-point solutions such as Shapley value, tau-value and Nucleolus. Depending upon their data rate requirements for transmission, SUs use the earned pay-off to bid for idle channels through a socially optimal Vickrey-Clarke-Groves (VCG) auction mechanism. Simulation results show that, in comparison with other resource allocation models, the proposed cooperative game-theoretic model provides the best balance between fairness, cooperation and performance in terms of data rates achieved by each SU.
In this paper, a multi-user cooperative computing framework is applied to enable mobile users to utilize available computing resources from other neighboring users via direct communication links. An incentive scheme based on Bertrand game is proposed for the user to determine textit{who} and textit{how} to cooperate. We model the resource demand users as textit{buyers} who aim to use minimal payments to maximize energy savings, whereas resource supply users as textit{sellers} who aim to earn payments for their computing resource provision. A Bertrand game against textit{buyers market} is formulated. When the users have textit{complete information} of their opponents, the Nash equilibrium (NE) of the game is obtained in closed form, while in the case of textit{incomplete information}, a distributed iterative algorithm is proposed to find the NE. The simulation results verify the effectiveness of the proposed scheme.
A traditional assumption in game theory is that players are opaque to one another -- if a player changes strategies, then this change in strategies does not affect the choice of other players strategies. In many situations this is an unrealistic assu mption. We develop a framework for reasoning about games where the players may be translucent to one another; in particular, a player may believe that if she were to change strategies, then the other player would also change strategies. Translucent players may achieve significantly more efficient outcomes than opaque ones. Our main result is a characterization of strategies consistent with appropriate analogues of common belief of rationality. Common Counterfactual Belief of Rationality (CCBR) holds if (1) everyone is rational, (2) everyone counterfactually believes that everyone else is rational (i.e., all players i believe that everyone else would still be rational even if i were to switch strategies), (3) everyone counterfactually believes that everyone else is rational, and counterfactually believes that everyone else is rational, and so on. CCBR characterizes the set of strategies surviving iterated removal of minimax dominated strategies: a strategy $sigma_i$ is minimax dominated for i if there exists a strategy $sigma_i$ for i such that $min_{mu_{-i}} u_i(sigma_i, mu_{-i}) > max_{mu_{-i}} u_i(sigma_i, mu_{-i})$.
We study data-driven assistants that provide congestion forecasts to users of shared facilities (roads, cafeterias, etc.), to support coordination between them, and increase efficiency of such collective systems. Key questions are: (1) when and how m uch can (accurate) predictions help for coordination, and (2) which assistant algorithms reach optimal predictions? First we lay conceptual ground for this setting where user preferences are a priori unknown and predictions influence outcomes. Addressing (1), we establish conditions under which self-fulfilling prophecies, i.e., perfect (probabilistic) predictions of what will happen, solve the coordination problem in the game-theoretic sense of selecting a Bayesian Nash equilibrium (BNE). Next we prove that such prophecies exist even in large-scale settings where only aggregated statistics about users are available. This entails a new (nonatomic) BNE existence result. Addressing (2), we propose two assistant algorithms that sequentially learn from users reactions, together with optimality/convergence guarantees. We validate one of them in a large real-world experiment.
We offer a new approach to the information decomposition problem in information theory: given a target random variable co-distributed with multiple source variables, how can we decompose the mutual information into a sum of non-negative terms that qu antify the contributions of each random variable, not only individually but also in combination? We derive our composition from cooperative game theory. It can be seen as assigning a fair share of the mutual information to each combination of the source variables. Our decomposition is based on a different lattice from the usual partial information decomposition (PID) approach, and as a consequence our decomposition has a smaller number of terms: it has analogs of the synergy and unique information terms, but lacks terms corresponding to redundancy. Because of this, it is able to obey equivalents of the axioms known as local positivity and identity, which cannot be simultaneously satisfied by a PID measure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا