ﻻ يوجد ملخص باللغة العربية
The performance of organic solar cells (OSCs) can be greatly improved by incorporating silica-coated gold nanorods (Au@SiO2 NRs) at the interface between the hole transporting layer and the active layer due to the plasmonic effect. The silica shell impedes the aggregation effect of the Au NRs in ethanol solution as well as the server charge recombination on the surface of the Au NRs otherwise they would bring forward serious reduction in open circuit voltage when incorporating the Au NRs at the positions in contact with the active materials. As a result, while the high open circuit voltage being maintained, the optimized plasmonic OSCs possess an increased short circuit current, and correspondingly an elevated power conversion efficiency with the enhancement factor of ~11%. The origin of performance improvement in OSCs with the Au@SiO2 NRs was analyzed systematically using morphological, electrical, optical characterizations along with theoretical simulation. It is found that the broadband enhancement in absorption, which yields the broadband enhancement in exciton generation in the active layer, is the major factor contributing to the increase in the short circuit current density. Simulation results suggest that the excitation of the transverse and longitudinal surface plasmon resonances of individual NRs as well as their mutual coupling can generate strong electric field near the vicinity of the NRs, thereby an improved exciton generation profile in the active layer. The incorporation of Au@SiO2 NRs at the interface between the hole transporting layer and the active layer also improves hole extraction in the OSCs.
We investigate chemo-photothermal effects of gold nanorods (GNRs) coated using mesoporous silica (mSiO2) loading doxorubicin (DOX). When the mesoporous silica layer is embedded by doxorubicin drugs, a significant change in absorption spectra enable t
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conve
Ternary organic solar cells (TOSC) are currently under intensive investigation, recently reaching a record efficiency of 17.1%. The origin of the device open-circuit voltage (VOC), already a multifaceted issue in binary OSC, is even more complex in T
The power conversion efficiency of an ultrathin CIGS solar cell was maximized using a coupled optoelectronic model to determine the optimal bandgap grading of the nonhomogeneous CIGS layer in the thickness direction. The bandgap of the CIGS layer was
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differen