ﻻ يوجد ملخص باللغة العربية
We consider an extension of Zee-Babu model to explain the smallness of neutrino masses. (1) We extend the lepton number symmetry of the original model to local $B-L$ symmetry. (2) We introduce three Dirac dark matter candidates with flavor-dependent $B-L$ charges. After the spontaneous breaking of $B-L$, a discrete symmetry $Z_6$ remains, which guarantees the stability of dark matter. Then the model can explain the 3.5 keV X-ray line signal with decaying dark matter. We also introduce a real scalar field which is singlet under both the SM and $U(1)_{B-L}$ and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of $U(1)_{B-L}$ gauge boson, $Z$, and is suppressed below current experimental bound when $Z$ mass is heavy ($gtrsim 10$ TeV). If the singlet scalar mass is about 0.1--10 MeV, DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.
We discuss the 3.55 keV X-ray line anomaly reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy in a radiative neutrino model, in which the mixing between the active neutrino and the dark matter is gener
We study a light dark matter in a radiative neutrino model to explain the X-ray line signal at about $3.5$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. The signal requires very tiny
We study an exciting dark matter scenario in a radiative neutrino model to explain the X-ray line signal at $3.55$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We show that the requ
Recently two groups independently observed unidentified X-ray line signal at the energy 3.55 keV from the galaxy clusters and Andromeda galaxy. We show that this anomalous signal can be explained in annihilating dark matter model, for example, fermio
We study a three loop induced radiative neutrino model with global $U(1)$ symmetry at TeV scale, in which we consider two component dark matter particles. We discuss the possibility to explain the X-ray line signal at about 3.55 keV recently reported