ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational modeling of the class I low-mass protostar Elias 29 applying optical constants of ices processed by high energy cosmic ray analogs

206   0   0.0 ( 0 )
 نشر من قبل Will Robson Monteiro Rocha
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the study of the effects of high energy cosmic rays (CRs) over the astrophysical ices, observed toward the embedded class I protostar Elias 29, by using computational modeling and laboratory data. Its spectrum was observed with {it Infrared Space Observatory - ISO}, covering 2.3 - 190 $mu$m. The modeling employed the three-dimensional Monte Carlo radiative transfer code RADMC-3D (Dullemond et al. 2012) and laboratory data of bombarded ice grains by CRs analogs, and unprocessed ices (not bombarded). We are assuming that Elias 29 has a self-irradiated disk with inclination $i =$ 60$^{circ}$, surrounded by an envelope with bipolar cavity. The results show that absorption features toward Elias 29, are better reproduced by assuming a combination between unprocessed astrophysical ices at low temperature (H$_2$O, CO, CO$_2$) and bombarded ices (H$_2$O:CO$_2$) by high energy CRs. Evidences of the ice processing around Elias 29 can be observed by the good fitting around 5.5-8.0 $mu$m, by polar and apolar ice segregation in 15.15-15.25 $mu$m, and by presence of the CH$_4$ and HCOOH ices. Given that non-nitrogen compounds were employed in this work, we assume that absorption around 5.5-8.0 $mu$m should not be associated with NH$_4^+$ ion (Shutte & Khanna2003), but more probably with aliphatic ethers (e.g. R1-OCH$_2$-R2), CH$_3$CHO and related species. The results obtained in this paper are important, because they show that the environment around protostars is better modeled considering processed samples and, consequently, demonstrates the chemical evolution of the astrophysical ices.



قيم البحث

اقرأ أيضاً

55 - A.C.A. Boogert 2002
A (sub-)millimeter line and continuum study of the class I protostar Elias 29 in the Rho Ophiuchi molecular cloud is presented, whose goals are to understand the nature of this source, and to locate the ices that are abundantly present along this lin e of sight. Within 15-60 beams, several different components contribute to the line emission. Two different foreground clouds are detected, an envelope/disk system and a dense ridge of HCO+ rich material. The latter two components are spatially separated in millimeter interferometer maps. We analyze the envelope/disk system by using inside-out collapse and flared disk models. The disk is in a relatively face-on orientation (<60 degrees), which explains many of the remarkable observational features of Elias 29, such as its flat SED, its brightness in the near infrared, the extended components found in speckle interferometry observations, and its high velocity molecular outflow. It cannot account for the ices seen along the line of sight, however. A small fraction of the ices is present in a (remnant) envelope of mass 0.12-0.33 Msun, but most of the ices (~70%) are present in cool (T<40 K) quiescent foreground clouds. This explains the observed absence of thermally processed ices (crystallized H2O) toward Elias 29. Nevertheless, the temperatures could be sufficiently high to account for the low abundance of apolar (CO, N2, O2) ices. This work shows that it is crucial to obtain spectrally and spatially resolved information from single-dish and interferometric molecular gas observations in order to determine the nature of protostars and to interpret infrared ISO satellite observations of ices and silicates along a pencil beam.
71 - I. Pillitteri 2019
[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band enco mpassing simultaneously both soft and hard X-rays. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at $sim6.4$ keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the $approx 0.15--0.5$ keV range. These values make unrealistic a simple model with a centrally illuminated disk and suggest a role of the cavity containing Elias 29 and possibly reverberation processes that could occur in it. We observed two flares, with duration of 20 ks and 50 ks, respectively. We systematically observed an increase of $N_H$ during the flares of a factor five. This behavior has been observed during flares previously detected in Elias 29 with XMM-Newton and ASCA. The phenomenon hints that the flaring regions could be buried under the accretion streams and at high stellar latitudes, as the X-rays from flares pass through gas denser than the gas along the line of sight of the quiescent corona. In a different scenario, a contribution from scattered soft photons to the primary coronal emission could mimic a shallower $N_H$ in the quiescent spectrum. In the spectrum of the full NuSTAR exposure, we detect hard X-ray emission in the band $approx20-80$ keV in excess with respect to the thermal emission. The hard X-ray emission could be due to a population of energetic electrons accelerated by the magnetic field along the accretion streams. These particles could concur to pumping up the Fe fluorescence of cold Fe of the disk along with X-ray photons with $E>7.11$ keV.
We have observed the Class I protostellar source Elias 29 with Atacama Large Millimeter/submillimeter Array (ALMA). We have detected CS, SO, $^{34}$SO, SO$_2$, and SiO line emissions in a compact component concentrated near the protostar and a ridge component separated from the protostar by 4arcsec ($sim 500$ au). The former component is found to be abundant in SO and SO$_2$ but deficient in CS. The abundance ratio SO/CS is as high as $3^{+13}_{-2} times 10^2$ at the protostar, which is even higher than that in the outflow-shocked region of L1157 B1. However, organic molecules (HCOOCH$_3$, CH$_3$OCH$_3$, CCH, and c-C$_3$H$_2$) are deficient in Elias 29. We attribute the deficiency in organic molecules and richness in SO and SO$_2$ to the evolved nature of the source or the relatively high dust temperature (protectraisebox{-0.7ex}{$:stackrel{textstyle >}{sim}:$} 20 K) in the parent cloud of Elias 29. The SO and SO$_2$ emissions trace rotation around the protostar. Assuming a highly inclined configuration ($i geq 65$degr; 0degr for a face-on configuration) and Keplerian motion for simplicity, the protostellar mass is estimated to be (0.8 -- 1.0) Msun. The $^{34}$SO and SO$_2$ emissions are asymmetric in their spectra; the blue-shifted components are weaker than the red-shifted ones. Although this may be attributed to the asymmetric molecular distribution, other possibilities are also discussed.
348 - M.E. Palumbo 2008
We have performed new laboratory experiments which gave us the possibility to obtain an estimate of the amount of carbon chain oxides (namely C3O2, C2O, and C3O) formed after irradiation (with 200 keV protons) of pure CO ice, at 16 K. The analysis of laboratory data indicates that in dense molecular clouds, when high CO depletion occurs, an amount of carbon chain oxides as high as 2-3x10^-3 with respect to gas phase carbon monoxide can be formed after ion irradiation of icy grain mantles. Then we have searched for gas phase C2O and C3O towards ten low-mass young stellar objects. Among these we have detected the C3O line at 38486.891 MHz towards the low-mass protostar Elias 18. On the basis of the laboratory results we suggest that in dense molecular clouds gas phase carbon chain oxides are formed in the solid phase after cosmic ion irradiation of CO-rich icy mantles and released to the gas phase after desorption of icy mantles. We expect that the Atacama Large Millimeter Array (ALMA), thanks to its high sensitivity and resolution, will increase the number of carbon chain oxides detected in dense molecular clouds.
Recent high-angular resolution (40 mas) ALMA observations at 1.14 mm resolve a compact (R~200 au) flattened dust structure perpendicular to the HH 80-81 jet emanating from the GGD 27-MM1 high-mass protostar, making it a robust candidate for a true ac cretion disk. The jet/disk system (HH 80-81 / GGD 27-MM1) resemble those found in association with low- and intermediate-mass protostars. We present radiative transfer models that fit the 1.14 mm ALMA dust image of this disk which allow us to obtain its physical parameters and predict its density and temperature structure. Our results indicate that this accretion disk is compact (Rdisk~170 au) and massive (5Msun), about 20% of the stellar mass of 20 Msun. We estimate the total dynamical mass of the star-disk system from the molecular line emission finding a range between 21 and 30 Msun, which is consistent with our model. We fit the density and temperature structures found by our model with power law functions. These results suggest that accretion disks around massive stars are more massive and hotter than their low-mass siblings, but they still are quite stable. We also compare the temperature distribution in the GGD 27-MM1 disk with that found in low- and intermediate-mass stars and discuss possible implications on the water snow line. We have also carried about a study of the distance based on Gaia DR2 data and the population of young stellar objects (YSOs) in this region, and from the extinction maps. We conclude that the source distance is in within 1.2 and 1.4 kpc, closer than what was derived in previous studies (1.7 kpc).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا