ترغب بنشر مسار تعليمي؟ اضغط هنا

$Z$ search in non-minimal Universal Extra Dimensions: two bumps and interference

141   0   0.0 ( 0 )
 نشر من قبل Kenji Nishiwaki
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss prospects of the $Z$ search at the LHC in non-minimal Universal Extra Dimensions with tree-level brane-local terms in five dimensions. In this scenario, we find two major differences from the usual $Z$ physics: (i) two $Z$ candidates close-by in mass exist; (ii) the effective couplings to the SM fermions could be very large due to drastic overlapping of their profiles along the extra dimension. To evaluate the actual situation precisely, we reconsider the important issues of resonant processes, i.e., treatment of resonant propagators and including interference effects.



قيم البحث

اقرأ أيضاً

Discovery of a Higgs boson and precise measurements of its properties open a new window to test physics beyond the standard model. Models with Universal Extra Dimensions are not exception. Kaluza-Klein excitations of the standard model particles cont ribute to the production and decay of the Higgs boson. In particular, the parameters associated with third generation quarks are constrained by Higgs data, which are relatively insensitive to other searches often involving light quarks and leptons. We investigate implications of the 126 GeV Higgs in Next-to-Minimal Universal Extra Dimensions, and show that boundary terms and bulk masses allow a lower compactification scale as compared to in Minimal Universal Extra Dimensions.
In theories with Universal Extra-Dimensions (UED), the gamma_1 particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma_1 with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at ~ 10^{-11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 1/fb of data should be able to probe the current best-fit UED parameters.
We study the physics of Kaluza-Klein (KK) top quarks in the framework of a non-minimal Universal Extra Dimension (nmUED) with an orbifolded (S1/Z2) flat extra spatial dimension in the presence of brane-localized terms (BLTs). In general, BLTs affect the masses and the couplings of the KK excitations in a non-trivial way including those for the KK top quarks. On top of that, BLTs also influence the mixing of the top quark chiral states at each KK level and trigger mixings among excitations from different levels with identical KK parity (even or odd). The latter phenomenon of mixing of KK levels is not present in the popular UED scenario known as the minimal UED (mUED) at the tree level. Of particular interest are the mixings among the KK top quarks from level `0 and level `2 (driven by the mass of the Standard Model (SM) top quark). These open up new production modes in the form of single production of a KK top quark and the possibility of its direct decays to Standard Model (SM) particles leading to rather characteristic signals at the colliders. Experimental constraints and the restrictions they impose on the nmUED parameter space are discussed. The scenario is implemented in MadGraph 5 by including the quark, lepton, the gauge-boson and the Higgs sectors up to the second KK level. A few benchmark scenarios are chosen for preliminary studies of the decay patterns of the KK top quarks and their production rates at the LHC in various different modes. Recast of existing experimental analyzes in scenarios having similar states is found to be not so straightforward for the KK top quarks of the nmUED scenario under consideration.
In this paper we consider an $S^{1}/mathbb{Z}_2$ compactified flat extra dimensional scenario where all the standard model states can access the bulk and have generalised brane localised kinetic terms. The flavour structure of brane kinetic terms for the standard model fermions are dictated by stringent flavour bounds on the first two generations implying an $U(2)_{Q_L} otimes U(2)_{u_R} otimes U(2)_{d_R}$ flavour symmetry. We consider the constraints on such a scenario arising from dark matter relic density and direct detection measurements, precision electroweak data, Higgs physics and LHC dilepton searches. We discuss the possibility of such a scenario providing an explanation of the recently measured anomaly in $R_{K^{(ast)}}$ within the allowed region of the parameter space.
We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this spinless photon proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. The phenomenology of this dark matter candidate is strikingly different from Kaluza-Klein dark matter in theories with one universal extra dimension. Elastic scattering of the spinless photon with quarks is helicity suppressed, making its direct detection challenging, although possible at upcoming experiments. The prospects for indirect detection with gamma rays and antimatter are similar to those of neutralinos. The rates predicted at neutrino telescopes are below the sensitivity of next-generation experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا