ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband biphotons in a single spatial mode

287   0   0.0 ( 0 )
 نشر من قبل Konstantin Katamadze
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonastrate experimental technique for generating spatially single-mode broadband biphoton field. The method is based on dispersive optical element which precisely tailors the structure of type-I SPDC frequency angular spectrum in order to shift different spectral components to a single angular mode. Spatial mode filtering is realized by coupling biphotons into a single-mode optical fiber.



قيم البحث

اقرأ أيضاً

As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light.
An arbitrary polarization state of a single-mode biphoton is considered. The operationalistic criterion is formulated for the orthogonality og these states. It can be used to separate a biphoton with an arbitrary degree of polarization from a set of biphotons orthogonal to it. This is necessary fro the implementation of quantum cryptography protocol based on three-level systems. The experimental test of this criterion amounts to the observation of the anticorrelation effect for a biphoton with an arbitraty polarization state.
Spatial modes of light constitute valuable resources for a variety of quantum technologies ranging from quantum communication and quantum imaging to remote sensing. Nevertheless, their vulnerabilities to phase distortions, induced by random media, im pose significant limitations on the realistic implementation of numerous quantum-photonic technologies. Unfortunately, this problem is exacerbated at the single-photon level. Over the last two decades, this challenging problem has been tackled through conventional schemes that utilize optical nonlinearities, quantum correlations, and adaptive optics. In this article, we exploit the self-learning and self-evolving features of artificial neural networks to correct the complex spatial profile of distorted Laguerre-Gaussian modes at the single-photon level. Furthermore, we demonstrate the possibility of boosting the performance of an optical communication protocol through the spatial mode correction of single photons using machine learning. Our results have important implications for real-time turbulence correction of structured photons and single-photon images.
Light routing and manipulation are important aspects of integrated optics. They essentially rely on beam splitters which are at the heart of interferometric setups and active routing. The most common implementations of beam splitters suffer either fr om strong dispersive response (directional couplers) or tight fabrication tolerances (multimode interference couplers). In this paper we fabricate a robust and simple broadband integrated beam splitter based on lithium niobate with a splitting ratio achromatic over more than 130 nm. Our architecture is based on spatial adiabatic passage, a technique originally used to transfer entirely an optical beam from a waveguide to another one that has been shown to be remarkably robust against fabrication imperfections and wavelength dispersion. Our device shows a splitting ratio of 0.52$pm $0.03 and 0.48$pm $0.03 from 1500,nm up to 1630,nm. Furthermore, we show that suitable design enables the splitting in output beams with relative phase 0 or $pi$. Thanks to their independence to material dispersion, these devices represent simple, elementary components to create achromatic and versatile photonic circuits.
We propose and examine the use of biphoton pairs, such as those created in parametric down conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that th e precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number (Heisenberg scaling), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an $N$-pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا