ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic generation of arbitrary photonic states assisted by dissipation

166   0   0.0 ( 0 )
 نشر من قبل Alejandro Gonzalez-Tudela
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.



قيم البحث

اقرأ أيضاً

471 - X. X. Li , H. D. Yin , D. X. Li 2019
Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable quantum system, it is allowed to exist non-classical correlations. Here we propose two dissipative schemes for generating a maximally correla ted state of two qubits in the absence of quantum entanglement, which was raised by [F. Galve, G. L. Giorgi, and R. Zambrini, {color{blue}Phys. Rev. A {bf 83}, 012102 (2011)}]. These protocols take full advantages of the interaction between four-level atoms and strongly lossy optical cavities. In the first scenario, we alternatively change the phases of two classical driving fields, while the second proposal introduces a strongly lossy coupled-cavity system. Both schemes can realize all Lindblad terms required by the dissipative dynamics, guaranteeing the maximally quantum dissonant state to be the unique steady state for a certain subspace of system. Moreover, since the target state is a mixed state, the performance of our method is evaluated by the definition of super-fidelity $G(rho_{1},rho_{2})$, and the strictly numerical simulations indicate that fidelity outstripping $99%$ of the quantum dissonant state is achievable with the current cavity quantum electrodynamics parameters.
We present protocols to generate arbitrary photonic graph states from quantum emitters that are in principle deterministic. We focus primarily on two-dimensional cluster states of arbitrary size due to their importance for measurement-based quantum c omputing. Our protocols for these and many other types of two-dimensional graph states require a linear array of emitters in which each emitter can be controllably pumped, rotated about certain axes, and entangled with its nearest neighbors. We show that an error on one emitter produces a localized region of errors in the resulting graph state, where the size of the region is determined by the coordination number of the graph. We describe how these protocols can be implemented for different types of emitters, including trapped ions, quantum dots, and nitrogen-vacancy centers in diamond.
114 - Yu Shi , Edo Waks 2021
Cluster states are useful in many quantum information processing applications. In particular, universal measurement-based quantum computation (MBQC) utilizes 2D cluster states, and topologically fault-tolerant MBQC requires cluster states with three or higher dimensions. This work proposes a protocol to deterministically generate multidimensional photonic cluster states using a single atom-cavity system and time-delay feedback. The dimensionality of the cluster state increases linearly with the number of time-delay feedback. We firstly give a diagrammatic derivation of the tensor network states, which is valuable in simulating matrix product states and projected entangled pair states generated from sequential photons. Our method also provides a simple way to bridge and analyze the experimental imperfections and the logical errors of the generated states. In this method, we analyze the generated cluster states under realistic experimental conditions and address both one-qubit and two-qubit errors. Through numerical simulation, we observe an optimal atom-cavity cooperativity for the fidelity of the generated states, which is surprising given the prevailing assumption that higher cooperativity systems are inherently better for photonic applications.
We propose a scheme that employs dissipation to deterministically generate entanglement in an ensemble of strongly interacting Rydberg atoms. With a combination of microwave driving between different Rydberg levels and a resonant laser coupling to a short lived atomic state, the ensemble can be driven towards a dark steady state that entangles all atoms. The long-range resonant dipole-dipole interaction between different Rydberg states extends the entanglement beyond the van der Walls interaction range with perspectives for entangling large and distant ensembles.
The ability to deterministically generate genuine multi-partite entanglement is fundamental for the advancement of quantum information science. We show that the interaction between entangled twin beams of light and an atomic ensemble under conditions for electromagnetically induced transparency leads to the generation of genuine hybrid tri-partite entanglement between the two input fields and the atomic ensemble. In such a configuration, the system is driven through dissipation to a steady state given by the hybrid entangled state. To show the presence of the genuine hybrid entanglement, we introduce a new approach to treat the atomic operators that makes it possible to show a violation of a tri-partite entanglement criterion based on the properties of the two optical fields and collective properties of the atomic ensemble. Additionally, we show that while each of the input optical fields does not exhibit single beam quadrature squeezing, as the fields propagate through the atomic medium their individual quadratures can become squeezed and in some cases oscillate between the presence and absence of squeezing. Finally, we propose a technique to characterize the tri-partite entanglement through joint measurements of the fields leaving the atomic medium, making such an approach experimentally accessible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا