ﻻ يوجد ملخص باللغة العربية
A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.
Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable quantum system, it is allowed to exist non-classical correlations. Here we propose two dissipative schemes for generating a maximally correla
We present protocols to generate arbitrary photonic graph states from quantum emitters that are in principle deterministic. We focus primarily on two-dimensional cluster states of arbitrary size due to their importance for measurement-based quantum c
Cluster states are useful in many quantum information processing applications. In particular, universal measurement-based quantum computation (MBQC) utilizes 2D cluster states, and topologically fault-tolerant MBQC requires cluster states with three
We propose a scheme that employs dissipation to deterministically generate entanglement in an ensemble of strongly interacting Rydberg atoms. With a combination of microwave driving between different Rydberg levels and a resonant laser coupling to a
The ability to deterministically generate genuine multi-partite entanglement is fundamental for the advancement of quantum information science. We show that the interaction between entangled twin beams of light and an atomic ensemble under conditions