We study a deSitter/Anti-deSitter/Poincare Yang-Mills theory of gravity in d-space-time dimensions in an attempt to retain the best features of both general relativity and Yang-Mills theory: quadratic curvature, dimensionless coupling and background independence. We derive the equations of motion for Lie algebra valued scalars and show that in the geometric optics limit they traverse geodesics with respect to the Lorentzian geometry determined by the frame fields. Mixing between components appears to next to leading order in the WKB approximation. We then restrict to two space-time dimensions for simplicity, in which case the theory reduces to the well known Katanaev-Volovich model. We complete the Hamiltonian analysis of the vacuum theory and use it to prove a generalized Birkhoff theorem. There are two classes of solutions: with torsion and without torsion. The former are parametrized by two constants of motion, have event horizons for certain ranges of the parameters and a curvature singularity. The latter yield a unique solution, up to diffeomorphisms, that describes a space constant curvature .