ﻻ يوجد ملخص باللغة العربية
A vertically shaken granular medium hosts a blade rotating around a fixed vertical axis, which acts as a mesorheological probe. At high densities, independently from the shaking intensity, the blades dynamics show strong caging effects, marked by transient sub-diffusion and a maximum in the velocity power density spectrum (vpds), at a resonant frequency $sim 10$ Hz. Interpreting the data through a diffusing harmonic cage model allows us to retrieve the elastic constant of the granular medium and its collective diffusion coefficient. For high frequencies $f$, a tail $sim 1/f$ in the vpds reveals non-trivial correlations in the intra-cage micro-dynamics. At very long times (larger than $10$ s), a super-diffusive behavior emerges, ballistic in the most extreme cases. Consistently, the distribution of slow velocity inversion times $tau$ displays a power-law decay, likely due to persistent collective fluctuations of the host medium.
Some general dynamical properties of models for compaction of granular media based on master equations are analyzed. In particular, a one-dimensional lattice model with short-ranged dynamical constraints is considered. The stationary state is consist
The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experi
Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled syst
We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vib
Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large