ﻻ يوجد ملخص باللغة العربية
A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from $m$-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the Windowed, MuLTiple-Peak, averaged spectrum, or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010.
Space-borne missions CoRoT and Kepler have provided a rich harvest of high-quality photometric data for solar-like pulsators. It is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant. However, among the sei
We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as thes
We compute the p-mode oscillation frequencies and frequency splittings that arise in a two-dimensional model of the Sun that contains toroidal magnetic fields in its interior.
We use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star Beta Gem. This spacing along with the interferometric radius for this star is used to deriv
We have derived the temporal power spectra of the horizontal velocity of the solar photosphere. The data sets for 14 quiet regions observed with the Gband filter of Hinode/SOT are analyzed to measure the temporal fluctuation of the horizontal velocit