Steady-state thermodynamics of non-interacting transport beyond weak coupling


الملخص بالإنكليزية

We investigate the thermodynamics of simple (non-interacting) transport models beyond the scope of weak coupling. For a single fermionic or bosonic level -- tunnel-coupled to two reservoirs -- exact expressions for the stationary matter and energy current are derived from the solutions of the Heisenberg equations of motion. The positivity of the steady-state entropy production rate is demonstrated explicitly. Finally, for a configuration in which particles are pumped upwards in chemical potential by a downward temperature gradient, we demonstrate that the thermodynamic efficiency of this process decreases when the coupling strength between system and reservoirs is increased, as a direct consequence of the loss of a tight coupling between energy and matter currents.

تحميل البحث