ﻻ يوجد ملخص باللغة العربية
We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing.
Graph drawing addresses the problem of finding a layout of a graph that satisfies given aesthetic and understandability objectives. The most important objective in graph drawing is minimization of the number of crossings in the drawing, as the aesthe
We consider straight line drawings of a planar graph $G$ with possible edge crossings. The emph{untangling problem} is to eliminate all edge crossings by moving as few vertices as possible to new positions. Let $fix(G)$ denote the maximum number of v
Stress, edge crossings, and crossing angles play an important role in the quality and readability of graph drawings. Most standard graph drawing algorithms optimize one of these criteria which may lead to layouts that are deficient in other criteria.
For a planar graph with a given f-vector $(f_{0}, f_{1}, f_{2}),$ we introduce a cubic polynomial whose coefficients depend on the f-vector. The planar graph is said to be real if all the roots of the corresponding polynomial are real. Thus we have a
This paper defines a distance function that measures the dissimilarity between planar geometric figures formed with straight lines. This function can in turn be used in partial matching of different geometric figures. For a given pair of geometric fi