ﻻ يوجد ملخص باللغة العربية
Orthorhombic single crystals of TbMn0.5Fe0.5O3 are found to exhibit spin-reorientation, magnetization reversal and weak ferromagnetism. Strong anisotropy effects are evident in the temperature dependent magnetization measurements along the three crystallographic axes a, b and c. A broad magnetic transition is visible at T_N (Fe/Mn) = 286 K due to paramagnetic to AxGyCz ordering. A sharp transition is observed at T_SR (Fe/Mn) = 28 K, which is pronounced along c axis in the form of a sharp jump in magnetization where the spins reorient to GxAyFz configuration. The negative magnetization observed below TSR Fe/Mn along c axis is explained in terms of domain wall pinning. A component of weak ferromagnetism is observed in field-scans along c-axis but below 28 K. Field-induced steps-like transitions are observed in hysteresis measurement along b axis below 28 K. It is noted that no sign of Tb-order is discernible down to 2 K. TbMn0.5Fe0.5O3 could be highlighted as a potential candidate to evaluate its magneto-dielectric effects across the magnetic transitions.
The perovskite TbFe$_{0.5}$Cr$_{0.5}$O$_3$ shows two anomalies in the magnetic susceptibility at $T_N$ = 257K and $T_{SR}$ = 190K which are respectively, the antiferromagnetic and spin reorientation transition that occur in the Fe/Cr sublattice. Anal
Using ab initio calculations and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in Ni-based solid-solution alloys: Ni_{0.5}Co_{0.5}, Ni_{0.5}Fe_{0.5}, Ni_{0.8}Fe_{0.2} and Ni_{0
The structural, magnetic, and electronic properties of NdFe$_{0.5}$Mn$_{0.5}$O$_3$ have been studied in detail using bulk magnetization, neutron/x-ray diffraction and first principles density functional theory calculations. The material crystallizes
We report the structural, static, and dynamic properties of Cr$_{0.5}$Fe$_{0.5}$Ga by means of powder x-ray diffraction, magnetization, heat capacity, magnetic relaxation, and magnetic memory effect measurements. DC magnetization and AC susceptibilit
Magnetization and neutron diffraction measurements indicate long-range antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism and novel, field-induced spin reorient