ﻻ يوجد ملخص باللغة العربية
Newborn black holes in collapsing massive stars can be accompanied by a fallback disk. The accretion rate is typically super-Eddington and strong disk outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disk outflows produce blue UV-optical transients with a peak bolometric luminosity of ~10^(42-43) erg s^-1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ~ a few to ~ 10 days. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Pan-STARRS and PTF. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.
We consider radio emission from a newborn black hole (BH), which is accompanied by a mini-disk with a mass of $lesssim M_odot$. Such a disk can be formed from an outer edge of the progenitors envelope, especially for metal-poor massive stars and/or m
To determine the epoch of reionization precisely and to reveal the property of inhomogeneous reionization are some of the most important topics of modern cosmology. Existing methods to investigate reionization which use cosmic microwave background, L
We consider black hole formation in failed supernovae when a dense circumstellar medium (CSM) is present around the massive star progenitor. By utilizing radiation hydrodynamical simulations, we calculate the mass ejection of blue supergiants and Wol
We investigate the effects of mass loss during the main-sequence (MS) and post-MS phases of massive star evolution on black hole (BH) birth masses. We compute solar metallicity Geneva stellar evolution models of an 85 $M_{odot}$ star with mass-loss r
A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris f