ﻻ يوجد ملخص باللغة العربية
Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of 4-dimensional N=2 super-symmetric gauge theories. The specific model considered here posseses U(2)local x SU(2)global symmetry, with two scalar doublets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x3 direction, and they are characterized by a matrix phase between the two doublets, referred to as twist. Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying 1st order Bogomolny-type equations and 2nd order Gauss-constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break rotational symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can maintain their charge (or twist) fixed with respect to small perturbations.
The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2 vortices can be fitted into a local SU(2
We consider U(n+1) Yang-Mills instantons on the space Sigmatimes S^2, where Sigma is a compact Riemann surface of genus g. Using an SU(2)-equivariant dimensional reduction, we show that the U(n+1) instanton equations on Sigmatimes S^2 are equivalent
A brane-world $SU(5)$ GUT model with global non-Abelian vortices is constructed in six-dimensional spacetime. We find a solution with a vortex associated to $SU(3)$ separated from another vortex associated to $SU(2)$. This $3-2$ split configuration a
We study the properties of a single magnetic vortex and magnetic vortex lattices in a generalization of the Abelian Higgs model containing the simplest derivative interaction that preserves the $U(1)$ gauge symmetry of the original model. The paper i
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a