ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex gas kinematics in the nucleus of the Seyfert 2 galaxy NGC 1386: rotation, outflows and inflows

117   0   0.0 ( 0 )
 نشر من قبل Davide Lena Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7$^{primeprime} times 9^{primeprime}$ (530 $times$ 680 pc) at a spatial resolution of 0.9 (68 pc), and the spectral range 5700-7000 AA at a resolution of 66 km s$^{-1}$. The line emission is dominated by a bright central component, with two lobes extending $approx$ 3$^{primeprime}$ north and south of the nucleus. We identify three main kinematic components. The first has low velocity dispersion ($bar sigma approx $ 90 km s$^{-1}$), extends over the whole field-of-view, and has a velocity field consistent with gas rotating in the galaxy disk. We interpret the lobes as resulting from photoionization of disk gas in regions where the AGN radiation cones intercept the disk. The second has higher velocity dispersion ($bar sigma approx$ 200 km s$^{-1}$) and is observed in the inner 150 pc around the continuum peak. This component is double peaked, with redshifted and blueshifted components separated by $approx$ 500 km s$^{-1}$. Together with previous HST imaging, these features suggest the presence of a bipolar outflow for which we estimate a mass outflow rate of $mathrm{dot M} gtrsim $ 0.1 M$_{odot}$ yr$^{-1}$. The third component is revealed by velocity residuals associated with enhanced velocity dispersion and suggests that outflow and/or rotation is occurring approximately in the equatorial plane of the torus. A second system of velocity residuals may indicate the presence of streaming motions along dusty spirals in the disk.



قيم البحث

اقرأ أيضاً

We present a two-dimensional mapping of stellar population age components, emission-line fluxes, gas excitation and kinematics within the inner $sim200$ pc of the Seyfert 2 galaxy NGC 2110. We used the Gemini North Integral Field Spectrograph (NIFS) in the J and K bands at a spatial resolution of $sim22$ pc. The unresolved nuclear continuum is originated in combined contributions of young stellar population (SP; age$leq100$ Myr), a featureless AGN continuum and hot dust emission. The young-intermediate SP ($100<$age$leq700$ Myr) is distributed in a ring-shaped structure at $approx140$ pc from the nucleus, which is roughly coincident with the lowest values of the stellar velocity dispersion. In the inner $approx115$ pc the old SP (age$>2$ Gyr) is dominant. The [FeII]1.25$mu$m emission-line flux distribution is correlated with the radio emission and its kinematics comprise two components, one from gas rotating in the galaxy plane and another from gas in outflow within a bicone oriented along north-south. These outflows seem to originate in the interaction of the radio jet with the ambient gas producing shocks that are the main excitation mechanism of the [FeII] emission. We estimate: (1) an ionized gas mass outflow rate of $sim0.5$ M$_odot$/yr at $sim$70 pc from the nucleus; and (2) a kinetic power for the outflow of only 0.05% of the AGN bolometric luminosity implying weak feedback effect on the galaxy.
Low-luminosity Active Galactic Nuclei, i.e. L_bol/L_edd ~ 10^-6 - 10^-3, constitute the bulk population of Active Galactic Nuclei (AGNs). Powerful jets, common in these objects, are a crucial source of feedback energy driving mass outflows into the h ost galaxy and the intergalactic medium. This paper reports the first direct measurement of powerful mass outflows traced by the forbidden high ionization gas in the low luminosity AGN NGC1386 at scales of a few parsecs from the central engine. The high angular resolution of the data allows us to directly measure the location, morphology and kinematic of the outflow. This the form of two symmetrical expanding hot gas shells moving in opposite directions along the line of sight. The co-spatiality of the gas shells with radio emission seen at the same parsec scales and with X-rays indicates that this is a shock-driven outflow induced by an incipient core-jet. With a minimum number of assumptions, we derive a mass outflow rate of 11 solar masses/yr, comparable to those of powerful AGN. The result has strong implications in the global accounting of feedback mass and energy driven by a low-luminosity AGN into the medium and the corresponding galaxy evolution.
We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers $13^{primeprime} times 6^{primeprime}$ ($1173 times 541$ pc$^{2 }$) centered on the nucleus, at a spatial resolution of $52$ pc. The spectral coverage extends from $5600$ AA to $7000$ AA, at a spectral resolution $R=1918$. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to $100^{primeprime}$ (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [OI], [NII], H$alpha$, and [SII]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [OIII] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.
New Gemini mid-infrared spectroscopic observations together with Spitzer Space telescope archival data, are used to study the properties of the dusty torus and circumnuclear star formation in the active galaxies NGC 7213 and NGC 1386. Our main conclu sions can be summarised as follows. Polycyclic aromatic hydrocarbon (PAH) emission is absent in the T-ReCS nuclear spectra but is ubiquitous in the data from Spitzer at distances above 100 pc. Star formation rates surface densities are estimated from the 12.8 $mu m$ [Ne{sc ii}] line strengths leading to values close to 0.1M$_odot,,{rm yr}^{-1},,{rm kpc}^{-2}$. Analogous estimates based on photometric fluxes of IRACs 8 $mu m$ images are higher by a factor of almost 15, which could be linked to excitation of PAH molecules by older stellar populations. T-ReCS high spatial resolution data reveal silicate absorption at $lambda$ 9.7 $mu m$ in the central tens of parsecs of the Seyfert 2 NGC 1386, and silicate emission in the Seyfert 1 galaxy NGC 7213. In the case of NGC 1386 this feature is confined to the inner 20 pc, implying that the silicate might be linked to the putative dusty torus. Finally, by fitting CLUMPY models to the T-ReCS nuclear spectra we estimate the torus physical properties for both galaxies, finding line of sight inclinations consistent with the AGN unified model.
112 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا