ﻻ يوجد ملخص باللغة العربية
We incorporate the effective restoration of $U(1)_{rm A}$ symmetry in the 2+1 flavor entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength $K(T)$ to the Kobayashi-Maskawa-t Hooft (KMT) determinant interaction. $T$ dependence of $K(T)$ is well determined from pion and $a_0$-meson screening masses obtained by lattice QCD (LQCD) simulations with improved p4 staggered fermions. The strength is strongly suppressed in the vicinity of the pseudocritical temperature of chiral transition. The EPNJL model with the $K(T)$ well reproduces meson susceptibilities calculated by LQCD with domain-wall fermions. The model shows that the chiral transition is second order at the light-quark chiral-limit point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence the location is estimated.
We first extend our formulation for the calculation of $pi$- and $sigma$-meson screening masses to the case of finite chemical potential $mu$. We then consider the imaginary-$mu$ approach, which is an extrapolation method from imaginary chemical pote
The nature and location of the QCD phase transition close to the chiral limit restricts the phase structure of QCD with physical pion masses at non-vanishing density. At small pion masses, explicit $U(1)_{rm A}$-breaking, as induced by a non-trivial
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with the entanglement vertex. We propose a practical way of calculating meson screening masses in the NJL-type
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the N
In this work, we investigate not only the pole masses but also the screening masses of neutral pions at finite temperature and magnetic field by utilizing the random phase approximation (RPA) approach in the framework of the two-flavor Nambu--Jona-La