ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS$_2$ single crystals

114   0   0.0 ( 0 )
 نشر من قبل Ramzy Daou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The promising thermoelectric material TiS$_2$ can be easily chemically doped and intercalated. We present here studies of single crystals that are intercalated with excess Ti or Co, or substituted with Ta. We demonstrate the intrinsic impact of these dopants on the thermal transport in the absence of grain boundary scattering. We show that Ta doping has the greatest impact on the thermal scattering rate per ion added, leading to a five-fold reduction in the lattice thermal conductivity as compared to stoichiometric single crystals.



قيم البحث

اقرأ أيضاً

We present a study of the of thermal transport in thin single crystals of iron-intercalated titanium disulphide, Fe$_{x}$TiS$_2$ for $0leq x leq 0.20$. We determine the distribution of intercalants using high-resolution crystallographic and magnetic measurements, confirming the insertion of Fe without long-range ordering. We find that iron intercalation perturbs the lattice very little, and suppresses the tendency of TiS$_2$ to self-intercalate with excess Ti. We observe trends in the thermal conductivity that are compatible with our ab initio calculations of thermal transport in perfectly stoichiometric TiS$_2$.
143 - N. Ni , M. E. Tillman , J.-Q. Yan 2008
Single crystalline samples of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ with $x < 0.12$ have been grown and characterized via microscopic, thermodynamic and transport measurements. With increasing Co substitution, the thermodynamic and transport signatures of t he structural (high temperature tetragonal to low temperature orthorhombic) and magnetic (high temperature non magnetic to low temperature antiferromagnetic) transitions are suppressed at a rate of roughly 15 K per percent Co. In addition, for $x ge 0.038$ superconductivity is stabilized, rising to a maximum $T_c$ of approximately 23 K for $x approx 0.07$ and decreasing for higher $x$ values. The $T - x$ phase diagram for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ indicates that either superconductivity can exist in both low temperature crystallographic phases or that there is a structural phase separation. Anisotropic, superconducting, upper critical field data ($H_{c2}(T)$) show a significant and clear change in anisotropy between samples that have higher temperature structural phase transitions and those that do not. These data show that the superconductivity is sensitive to the suppression of the higher temperature phase transition.
Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal condu ctivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of (Mo|W)Se$_2$ monolayer crystals including Mo$_{1-x}$W$_x$Se$_2$ alloys with substitutional point defects, periodic MoSe$_2$|WSe$_2$ heterostructures with characteristic length scales and scale-free fractal MoSe$_2$|WSe$_2$ heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.
Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic war wickite structure (sp. gr. Pnam). The magnetization data have revealed a spin-glass transition at TSG= 11, 14 and 18 K for x= 0.3, 0.5 and 0.7, respectively.
92 - T. Masui , S. Lee , S. Tajima 2003
The electronic properties of the carbon substituted MgB$_2$ single crystals are reported. The carbon substitution drops T$_c$ below 2 K. In-plane resistivity shows a remarkable increase in residual resistivity by C-substitution, while the change of i n-plane/out-of-plane Hall coefficients is rather small. Raman scattering spectra indicate that the E$_{2g}$-phonon frequency radically hardens with increasing the carbon-content, suggesting the weakening of electron-phonon coupling. Another striking C-effect is the increases of the second critical fields in both in-plane and out-of-plane directions, accompanied by a reduction in the anisotropy ratio. The possible changes in the electronic state and the origin of T$_c$-suppression by C-substitution are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا