We study the role of different orientations of an applied magnetic field as well as the interplay of structural asymmetries on the characteristics of eigenstates in a quantum ring system. We use a nearly analytical model description of the quantum ring, which allows for a thorough study of elliptical deformations and their influence on the spin content and Berry phase of different quantum states. The diamagnetic shift and Zeeman interaction compete with the Rashba spin-orbit interaction, induced by confinement asymmetries and external electric fields, to change spin textures of the different states. Smooth variations in the Berry phase are observed for symmetric quantum rings as function of applied magnetic fields. Interestingly, we find that asymmetries induce nontrivial Berry phases, suggesting that defects in realistic structures would facilitate the observation of geometric phases.