ترغب بنشر مسار تعليمي؟ اضغط هنا

Short Timescale Photometric and Polarimetric Behavior of two BL Lacertae Type Objects

167   0   0.0 ( 0 )
 نشر من قبل Stefano Covino
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are astrophysical sources whose emission is dominated by non-thermal processes, typically interpreted as synchrotron and inverse Compton emission. Although the general picture is rather robust and consistent with observations, many aspects are still unexplored. Polarimetric monitoring can offer a wealth of information about the physical processes in blazars. Models with largely different physical ingredients can often provide almost indistinguishable predictions for the total flux, but usually are characterized by markedly different polarization properties. We explore, with a pilot study, the possibility to derive structural information about the emitting regions of blazars by means of a joint analysis of rapid variability of the total and polarized flux at optical wavelengths. Short timescale (from tens of seconds to a couple of minutes) optical linear polarimetry and photometry for two blazars, BL Lacertae and PKS 1424+240, was carried out with the PAOLO polarimeter at the 3.6m Telescopio Nazionale Galileo. Several hours of almost continuous observations were obtained for both sources. Our intense monitoring allowed us to draw strongly different scenarios for BL Lacertae and PKS 1424+240, with the former characterized by intense variability on time-scales from hours to a few minutes and the latter practically constant in total flux. Essentially the same behavior is observed for the polarized flux and the position angle. The variability time-scales turned out to be as short as a few minutes, although involving only a few percent variation of the flux. The polarization variability time-scale is generally consistent with the total flux variability. Total and polarized flux appear to be essentially uncorrelated. However, even during our relatively short monitoring, different regimes can be singled out. (abridged)



قيم البحث

اقرأ أيضاً

226 - Renato Falomo 2014
BL Lac objects are active nuclei, hosted in massive elliptical galaxies, the emission of which is dominated by a relativistic jet closely aligned with the line of sight. This implies the existence of a parent population of sources with a misaligned j et, that have been identified with low-power radiogalaxies. The spectrum of BL Lacs, dominated by non-thermal emission over the whole electromagnetic range, together with bright compact radio cores, high luminosities, rapid and large amplitude flux variability at all frequencies and strong polarization make these sources an optimal laboratory for high energy astrophysics. A most distinctive characteristic of the class is the weakness or absence of spectral lines, that historically hindered the identification of their nature and ever thereafter proved to be a hurdle in the determination of their distance. In this paper we review the main observational facts that contribute to the present basic interpretation of this class of active galaxies. We overview the history of the BL Lac objects research field and their population as it emerged from multi-wavelength surveys. The properties of the flux variability and polarization, compared with those at radio, X-ray and gamma-ray frequencies, are summarized together with the present knowledge of the host galaxies, their environments, and central black hole masses. We focus this review on the optical observations, that played a crucial role in the early phase of BL Lacs studies, and, in spite of extensive radio, X-ray, and recently gamma-ray observations, could represent the future major contribution to the unveiling of the origin of these sources. In particular they could provide a firm conclusion on the long debated issue of the cosmic evolution of this class of active galactic nuclei and on the connection between formation of supermassive black holes and relativistic jets.
In the third catalog of active galactic nuclei detected by the $Fermi$ Large Area Telescope Clean (3LAC) sample, there are 402 blazars candidates of uncertain type (BCU). The proposed analysis will help to evaluate the potential optical classificatio n flat spectrum radio quasars (FSRQs) versus BL Lacertae (BL Lacs) objects of BCUs, which can help to understand which is the most elusive class of blazar hidden in the Fermi sample. By studying the 3LAC sample, we found some critical values of $gamma$-ray photon spectral index ($Gamma_{rm ph}$), variability index (VI) and radio flux (${rm F_R}$) of the sources separate known FSRQs and BL Lac objects. We further utilize those values to defined an empirical high-confidence candidate zone that can be used to classify the BCUs. Within such a zone ($Gamma_{rm ph}<2.187$, log${rm F_R}<2.258$ and ${ rm logVI <1.702}$), we found that 120 BCUs can be classified BL Lac candidates with a higher degree of confidence (with a misjudged rate $<1%$). Our results suggest that an empirical high confidence diagnosis is possible to distinguish the BL Lacs from the Fermi observations based on only on the direct observational data of $Gamma_{rm ph}$, VI and ${rm F_R}$.
We review the main results from several radio, X-ray and multi-frequency surveys on the topic of cosmological evolution of BL Lacertae objects. Updated findings on BL Lac evolution following the recent identification of many sources in the ``Sedentar y Multi-Frequency survey are also discussed. By means of extensive Monte Carlo simulations we test some possible explanations for the peculiar cosmological evolution of BL Lacs. We find that a dependence of the relativistic Doppler factor on radio luminosity (as expected within the beaming scenario) may induce low values of V/V_max and that both edge effects at the low luminosity end of the BL Lacs radio luminosity function, and incompleteness at faint optical magnitudes may be the cause of the low V/V_max found for extreme HBL sources in X-ray selected samples.
Radio-bright BL Lacertae objects (BLOs) are typically variable and exhibit prominent flaring. We use a sample of 24 BLOs to get a clear idea of their flaring behavior and to find possible commonalities in their variability patterns. Our goal was to c ompare the results given by computational time scales and the observed variability parameters determined directly from the flux curves. Also, we wanted to find out if the BLO flares adhere to the generalized shock model. We use long-term monitoring data from 4.8, 8, 14.5, 22, 37, 90 and 230 GHz. The structure function, discrete correlation function and Lomb-Scargle periodogram time scales, calculated in a previous study, are analyzed in more detail. We determine flare durations, rise and decay times, absolute and relative peak fluxes from the monitoring data. We find that BLOs demonstrate a wide range of variability behavior. BLOs include sources with fast and strong variability, such as OJ 287, PKS 1749+096 and BL Lac, but also sources with more rolling fluctuations like PKS 0735+178. The most extreme flares can last for up to 13 years or have peak fluxes of approximately 12 Jy in the observers frame. When the Doppler boosting effect is taken into account, the peak flux of a flare does not depend on the duration of the flare. A rough analysis of the time lags and peak flux evolution indicates that BLO flares in the mm - cm wavelengths are high-peaking, i.e., are in the adiabatic stage. Thus, the results concur with the generalized shock model.
Blazars are the established sources of an intense and variable non-thermal radiation extending from radio wavelengths up to HE and VHE gamma-rays. Understanding the spectral evolution of blazars in selected frequency ranges, as well as multi-frequenc y correlations in various types of blazar sources, is of a primary importance for constraining the blazar physics. Here we present the results of a long-term optical monitoring of a sample of 30 blazars of the BL Lac type. We study the optical color-magnitude correlation patterns emerging in the analyzed sample, and compare the optical properties of the targets with the high-energy gamma-ray and high-frequency radio data. The optical observations were carried out in R and B filters using ATOM telescope. Each object was observed during at least 20 nights in the period 2007-2012. We find significant global color-magnitude correlations in 40 % of the sample. The sources which do not display any clear chromatism often do exhibit bluer-when-brighter (bwb) behavior but only in isolated shorter time intervals. We also discovered spectral state transitions at optical wavelengths in several sources. Finally, we find that the radio, optical, and gamma-ray luminosities of the sources obey almost linear correlations, which seem however induced, at least partly, by the redshift dependance, and may be also affected by non-simultaneousness of the analyzed dataset. We argue that the observed bwb behavior is intrinsic to the jet emission regions, at least for some of the analyzed blazars, rather than resulting from the contamination of the measured flux by the starlight of host galaxies. We also conclude that the significance of color-magnitude scalings does not correlate with the optical color, but instead seems to depend on the source luminosity, in a sense that these are the lowest-luminosity BL Lac objects which display the strongest correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا