ﻻ يوجد ملخص باللغة العربية
The spin diffusion length for thermally excited magnon spins is measured by utilizing a non-local spin-Seebeck effect measurement. In a bulk single crystal of yttrium iron garnet (YIG) a focused laser thermally excites magnon spins. The spins diffuse laterally and are sampled using a Pt inverse spin Hall effect detector. Thermal transport modeling and temperature dependent measurements demonstrate the absence of spurious temperature gradients beneath the Pt detector and confirm the non-local nature of the experimental geometry. Remarkably, we find that thermally excited magnon spins in YIG travel over 120 $mu$m at 23 K, indicating that they are robust against inelastic scattering. The spin diffusion length is found to be at least 47 $mu$m and as high as 73 $mu$m at 23 K in YIG, while at room temperature it drops to less than 10 $mu$m. Based on this long spin diffusion length, we envision the development of thermally powered spintronic devices based on electrically insulating, but spin conducting materials.
The longitudinal spin Seebeck effect refers to the generation of a spin current when heat flows across a normal metal/magnetic insulator interface. Until recently, most explanations of the spin Seebeck effect use the interfacial temperature differenc
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illuminatio
Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y$_{3}$Fe$_{5}$O$_{12}$ (YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory th
We report the observation of longitudinal spin Seebeck effects (LSSE) in an all-oxide bilayer system comprising an IrO$_2$ film and an Y$_3$Fe$_5$O$_{12}$ film. Spin currents generated by a temperature gradient across the IrO$_2$/Y$_3$Fe$_5$O$_{12}$
The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length ($lambda_m$) in a magnetic material, the average distance o