ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Study of the Magnetic Structure of Na$_2$IrO$_3$

153   0   0.0 ( 0 )
 نشر من قبل Kaige Hu Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic structure of honeycomb iridate Na$_2$IrO$_3$ is of paramount importance to its exotic properties. The magnetic order is established experimentally to be zigzag antiferromagnetic. However, the previous assignment of ordered moment to the $bm{a}$-axis is tentative. We examine the magnetic structure of Na$_{2}$IrO$_{3}$ using first-principles methods. Our calculations reveal that total energy is minimized when the zigzag antiferromagnetic order is magnetized along $bm{g}approxbm{a}+bm{c}$. Such a magnetic configuration is explained by adding anisotropic interactions to the nearest-neighbor Kitaev-Heisenberg model. Spin-wave spectrum is also calculated, where the calculated spin gap of $10.4$ meV can in principle be measured by future inelastic neutron scattering experiments. Finally we emphasize that our proposal is consistent with all known experimental evidence, including the most relevant resonant x-ray magnetic scattering measurements [X. Liu emph{et al.} {Phys. Rev. B} textbf{83}, 220403(R) (2011)].



قيم البحث

اقرأ أيضاً

116 - X. Liu , T. Berlijn , W.-G. Yin 2011
We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na$_2$IrO$_3$, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L$_3$-edge, we find 3D long range antiferromagnetic order below T$_N$=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel zig-zag structure.
The honeycomb lattice iridate Na$_2$IrO$_3$ shows frustrated magnetism and can potentially display Kitaev-like exchange interactions. Recently, it was shown that the electronic properties of the surface of crystalline Na$_2$IrO$_3$ can be tuned by Ar plasma treatment in a controlled manner leading to various phases of matter ranging from a fully gapped to a metallic surface, where the possibility of a charge-density wave (CDW) like transition is also expected. Here, through direct imaging with an atomic force microscope (AFM) in air, we show that the surface of crystalline Na$_2$IrO$_3$ evolves rapidly as elemental Na effuses out of the interleave planes to the surface and undergoes sublimation thereby disappearing from the surface gradually over time. Using conductive AFM we recorded a series of topographs and surface current maps simultaneously and found that the modification of the surface leads to change in the electronic properties in a dynamic fashion until the whole system reaches a dynamic equilibrium. These observations are important in the context of the exotic electronic and magnetic properties that the surface of Na$_2$IrO$_3$ displays.
Spin orbit assisted Mott insulators such as sodium iridate (Na$_2$IrO$_3$) have been an important subject of study in the recent years. In these materials, the interplay of electronic correlations, spin-orbit coupling, crystal field effects and a hon eycomb arrangement of ions bring exciting ground states, predicted in the frame of the Kitaev model. The insulating character of Na$_2$IrO$_3$ has hampered its integration to an electronic device, desirable for applications, such as the manipulation of quasiparticles interesting for topological quantum computing. Here we show through electronic transport measurements supported by Angle Resolved Photoemission Spectroscopy (ARPES) experiments, that electronic transport in Na$_2$IrO$_3$ is ruled by variable range hopping and it is strongly dependent on the magnetic ordering transition known for bulk Na$_2$IrO$_3$, as well as on external electric fields. Electronic transport measurements allow us to deduce a value for the localization length and the density of states in our Na$_2$IrO$_3$ thin crystals devices, offering an alternative approach to study insulating layered materials.
Magnetic properties and underlying magnetic models of the synthetic A$_2$Cu$_3$O(SO$_4)_3$ fedotovite (A = K) and puninite (A = Na) minerals, as well as the mixed euchlorine-type NaKCu$_3$O(SO$_4)_3$ are reported. We show that all these compounds con tain magnetic Cu$_6$ hexamer units, which at temperatures below about 100 K act as single spin-1 entities. Weak interactions between these magnetic molecules lead to long-range order below $T_N$ = 3.4 K (A = Na), 4.7 K (A = NaK), and about 3.0 K (A = K). The formation of the magnetic order is elucidated by ab initio calculations that reveal two-dimensional inter-hexamer interactions within crystallographic $bc$ planes. This model indicates the presence of a weakly distorted square lattice of $S=1$ magnetic ions and challenges the earlier description of the A$_2$Cu$_3$O(SO$_4)_3$ minerals in terms of Haldane spin chains.
Honeycomb iridates such as $gamma$-Li$_2$IrO$_3$ are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin liquid ground state, in $gamma$-Li$_2$IrO$_3$ it has been shown that the balance of magnetic interactions leads to the incommensurate spiral spin order at ambient pressure below 38 K. We study the fragility of this state in single crystals of $gamma$-Li$_2$IrO$_3$ using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3.0 GPa. RXS is a direct probe of the underlying electronic order, and we observe the abrupt disappearance of the $q$=(0.57, 0, 0) spiral order at a critical pressure $P_c = 1.5 $GPa with no accompanying change in the symmetry of the lattice. This dramatic disappearance is in stark contrast with recent studies of $beta$-Li$_2$IrO$_3$ that show continuous suppression of the spiral order in magnetic field; under pressure, a new and possibly nonmagnetic ground state emerges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا