ﻻ يوجد ملخص باللغة العربية
Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.
We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose--Hubbard Hamiltonian for the atoms and a Heisenbe
Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the gener
We study the dynamics of an interacting Bose-Hubbard chain coupled to a non-Markovian environment. Our basic tool is the reduced generating functional expressed as a path integral over spin-coherent states. We calculate the leading contribution to th
Ultracold atoms in optical lattices provide a unique opportunity to study Bose- Hubbard physics. In this work we show that by considering a spatially varying onsite interaction it is possible to manipulate the motion of excitations above the Mott pha
We address the effects of quenched disorder averaging in the time-evolution of systems of ultracold atoms in optical lattices in the presence of noise, imposed by of an environment. For bosonic systems governed by the Bose-Hubbard Hamiltonian, we qua