ترغب بنشر مسار تعليمي؟ اضغط هنا

The Grism Lens-Amplified Survey from Space (GLASS). IV. Mass reconstruction of the lensing cluster Abell 2744 from frontier field imaging and GLASS spectroscopy

117   0   0.0 ( 0 )
 نشر من قبل Xin Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Field (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain 5 high-confidence spectroscopic redshifts and 2 tentative ones. We confirm 1 strongly lensed system by detecting the same emission lines in all 3 multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.



قيم البحث

اقرأ أيضاً

We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of ten massive clusters of galaxies at redshift z=0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 yields near infrared spectra of the cluster cores, covering the wavelength range 0.81-1.69mum through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACSJ0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than H_AB=23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than H_AB=23. We provide a catalog of 139 emission-line based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself we also release software tools that are helpful to navigate the data.
We present the first study of the spatial distribution of star formation in z~0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the meth odology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10^8-10^11 M_sun, and star formation rates in the range 1-20 M_sun/yr. Both in clusters and in the field, H{alpha} is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. In ~20% of the cases, the H{alpha} emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the H{alpha} emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in H_alpha illustrates the complexity of the environmental process that regulate star formation. Upcoming analysis of the full GLASS dataset will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial dataset.
94 - L.E. Abramson 2019
We present a catalogue of 22755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover $sim$220 sq. arcmin to 7-orbit ($sim$10 ks) depth in 20 parallel pointin gs of the Advanced Camera for Surveys G800L grism. The fields are located 6 away from 10 massive galaxy clusters in the HFF and CLASH footprints. Thirteen of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at $zsim0.5$, to quasars at $zsim4$, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of $langle zrangle=0.6$ with a median uncertainty of $Delta z / (1+z)lesssim2%$ at $rm F814Wlesssim23$ AB. Robust continuum detections reach a magnitude fainter. The 5 $sigma$ limiting line flux is $f_{rm lim}approx5times10^{-17}rm~erg~s^{-1}~cm^{-2}$ and half of all sources have 50% of pixels contaminated at $lesssim$1%. All sources have 1- and 2-D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission line maps from the Grism Redshift and Line Analysis tool (GRIZLI). We provide other basic sample characterisations, show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use.
[abbreviated] We present a census of Lyalpha emission at $zgtrsim7$ utilizing deep near infrared HST grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected ga laxies we detect emission lines consistent with Lyalpha in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations we expect the completeness and the purity of the sample to be 40-100% and 60-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1$sigma$ flux limits reaches $5times10^{-18}$erg/s/cm$^{2}$ per position angle over the full wavelength range of GLASS (0.8-1.7$mu$m). Based on the conditional probability of Lyalpha emission measured from the ground at $zsim7$ we would have expected 12-18 Lyalpha emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Lyalpha emission with respect to $zsim6$. These candidates include a promising source at $z=8.1$. The spatial extent of Lyalpha in a deep stack of the most convincing Lyalpha emitters with $langle zrangle=7.2$ is consistent with that of the rest-frame UV continuum. Extended Ly$alpha$ emission, if present, has a surface brightness below our detection limit, consistent with the properties of lower redshift comparison samples. From the stack we estimate upper limits on rest-frame UV emission line ratios and find $f_textrm{CIV} / f_textrm{Ly${alpha}$} lesssim 0.32$ and $f_textrm{CIII]} / f_textrm{Ly$alpha$} lesssim 0.23$ in good agreement with other values published in the literature.
Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Lens-Amplified Survey from Space, we analyze 2200 cluster and 1748 field galaxies at $0.2leq zleq0.7$ to determine the impact of environment on galaxy size and structu re at $log M_*/M_odot>7.8$, an unprecedented limit at these redshifts. Based on simple assumptions-$r_e=f(M_*)$-we find no significant differences in half-light radii ($r_e$) between equal-mass cluster or field systems. More complex analyses-$r_e=f(M_*,U-V,n,z,Sigma$)-reveal local density $(Sigma$) to induce only a $7% pm 3%$ ($95%$ confidence) reduction in $r_e$ beyond what can be accounted for by $U-V$ color, Sersic index ($n$), and redshift ($z$) effects.Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-$r_e$ correlation in low-mass passive cluster galaxies ($log M_*/M_odot<9.8$) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-$r_e$ low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation).Conversely, $sim20%$ of small-$r_e$ low-mass passive cluster galaxies appear to have been in place since $zsim3$. Given the consistency of the small-$r_e$ galaxies stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms are mainly restricted to the lowest masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا