ﻻ يوجد ملخص باللغة العربية
We consider the long-time properties of the an obstruction in the Riemann-Hilbert approach to one dimensional focusing Nonlinear Schrodinger equation in the semiclassical limit for a one parameter family of initial conditions. For certain values of the parameter a large number of solitons in the system interfere with the $g$-function mechanism in the steepest descent to oscillatory Riemann-Hilbert problems. The obstruction prevents the Riemann-Hilbert analysis in a region in $(x,t)$ plane. We obtain the long time asymptotics of the boundary of the region (obstruction curve). As $ttoinfty$ the obstruction curve has a vertical asymptotes $x=pm ln 2$. The asymptotic analysis is supported with numerical results.
We consider the one dimensional focusing (cubic) Nonlinear Schrodinger equation (NLS) in the semiclassical limit with exponentially decaying complex-valued initial data, whose phase is multiplied by a real parameter. We prove smooth dependence of the
The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated $N$-phase nonlinear wave solutions to the focusing nonlinear Schrodinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular s
We consider the large data scattering problem for the 2D and 3D cubic-quintic NLS in the focusing-focusing regime. Our attention is firstly restricted to the 2D space, where the cubic nonlinearity is $L^2$-critical. We establish a new type of scatter
We study the construction of the Gibbs measures for the {it focusing} mass-critical fractional nonlinear Schrodinger equation on the multi-dimensional torus. We identify the sharp mass threshold for normalizability and non-normalizability of the focu
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p