ﻻ يوجد ملخص باللغة العربية
Three dimensional (3D) Dirac semimetals are 3D analogue of graphene, which display Dirac points with linear dispersion in k-space, stabilized by crystal symmetry. Cd3As2 and Na3Bi were predicted to be 3D Dirac semimetals and were subsequently demonstrated by photoemission experiments. As unveiled by transport measurements, several exotic phases, such as Weyl semimetals, topological insulators, and topological superconductors, can be deduced by breaking time reversal or inversion symmetry. Here, we reported a facile and scalable chemical vapor deposition method to fabricate high-quality Dirac semimetal Cd3As2 microbelts, they have shown ultrahigh mobility up to 1.15*10^5 cm^2/V s and pronounced Shubnikov-de Haas oscillations. Such extraordinary features are attributed to the suppression of electron backscattering. This research opens a new avenue for the scalable fabrication of Cd3As2 materials towards exciting electronic applications of 3D Dirac semimetals.
Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd3As2 nanoplates, we observe a
A large negative magnetoresistance is anticipated in topological semimetals in the parallel magnetic and electric field configuration as a consequence of the nontrivial topological properties. The negative magnetoresistance is believed to demonstrate
Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and
We report an investigation of temperature- and doping-dependent thermoelectric behaviors of topological semimetal Cd3As2. The electrical conductivity, thermal conductivity, Seebeck coefficient, and figure of merit (ZT) are calculated by using Boltzma
Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions; and tha