ﻻ يوجد ملخص باللغة العربية
Controlling magnetic properties on the nm-scale is essential for basic research in micro-magnetism and spin-dependent transport, as well as for various applications such as magnetic recording, imaging and sensing. This has been accomplished to a very high degree by means of layered heterostructures in the vertical dimension. Here we present a complementary approach that allows for a controlled tuning of the magnetic properties of Co/Pt heterostructures on the lateral mesoscale. By means of in-situ post-processing of Pt- and Co-based nano-stripes prepared by focused electron beam induced deposition (FEBID) we are able to locally tune their coercive field and remanent magnetization. Whereas single Co-FEBID nano-stripes show no hysteresis, we find hard-magnetic behavior for post-processed Co/Pt nano-stripes with coercive fields up to 850 Oe. We attribute the observed effects to the locally controlled formation of the CoPt L1$_{0}$ phase, whose presence has been revealed by transmission electron microscopy.
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were
The interface between two different semiconductors is crucial in determining the electronic properties at the heterojunction, therefore novel techniques that can probe these regions are of particular interest. Recently it has been shown that heteroju
Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vig
We have performed density functional theory calculations of graphene decorated with carbon adatoms, which bind at the bridge site of a C--C bond. Earlier studies have shown that the C adatoms have magnetic moments and have suggested the possibility o