ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian framework for verification and recalibration of ensemble forecasts: How uncertain is NAO predictability?

143   0   0.0 ( 0 )
 نشر من قبل Stefan Siegert
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictability estimates of ensemble prediction systems are uncertain due to limited numbers of past forecasts and observations. To account for such uncertainty, this paper proposes a Bayesian inferential framework that provides a simple 6-parameter representation of ensemble forecasting systems and the corresponding observations. The framework is probabilistic, and thus allows for quantifying uncertainty in predictability measures such as correlation skill and signal-to-noise ratios. It also provides a natural way to produce recalibrated probabilistic predictions from uncalibrated ensembles forecasts. The framework is used to address important questions concerning the skill of winter hindcasts of the North Atlantic Oscillation for 1992-2011 issued by the Met Office GloSea5 climate prediction system. Although there is much uncertainty in the correlation between ensemble mean and observations, there is strong evidence of skill: the 95% credible interval of the correlation coefficient of [0.19,0.68] does not overlap zero. There is also strong evidence that the forecasts are not exchangeable with the observations: With over 99% certainty, the signal-to-noise ratio of the forecasts is smaller than the signal-to-noise ratio of the observations, which suggests that raw forecasts should not be taken as representative scenarios of the observations. Forecast recalibration is thus required, which can be coherently addressed within the proposed framework.



قيم البحث

اقرأ أيضاً

Bayesian inference methods are applied within a Bayesian hierarchical modelling framework to the problems of joint state and parameter estimation, and of state forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear mar ine biogeochemical model. A novel approach is proposed to the formulation of the stochastic process model, in which ecophysiological properties of plankton communities are represented by autoregressive stochastic processes. This approach captures the effects of changes in plankton communities over time, and it allows the incorporation of literature metadata on individual species into prior distributions for process model parameters. The approach is applied to a case study at Ocean Station Papa, using Particle Markov chain Monte Carlo computational techniques. The results suggest that, by drawing on objective prior information, it is possible to extract useful information about model state and a subset of parameters, and even to make useful long-term forecasts, based on sparse and noisy observations.
The use of tiered warnings and multicategorical forecasts are ubiquitous in meteorological operations. Here, a flexible family of scoring functions is presented for evaluating the performance of ordered multicategorical forecasts. Each score has a ri sk parameter $alpha$, selected for the specific use case, so that it is consistent with a forecast directive based on the fixed threshold probability $1-alpha$ (equivalently, a fixed $alpha$-quantile mapping). Each score also has use-case specific weights so that forecasters who accurately discriminate between categorical thresholds are rewarded in proportion to the weight for that threshold. A variation is presented where the penalty assigned to near misses or close false alarms is discounted, which again is consistent with directives based on fixed risk measures. The scores presented provide an alternative to many performance measures currently in use, whose optimal threshold probabilities for forecasting an event typically vary with each forecast case, and in the case of equitable scores are based around sample base rates rather than risk measures suitable for users.
Probabilistic weather forecasts from ensemble systems require statistical postprocessing to yield calibrated and sharp predictive distributions. This paper presents an area-covering postprocessing method for ensemble precipitation predictions. We rel y on the ensemble model output statistics (EMOS) approach, which generates probabilistic forecasts with a parametric distribution whose parameters depend on (statistics of) the ensemble prediction. A case study with daily precipitation predictions across Switzerland highlights that postprocessing at observation locations indeed improves high-resolution ensemble forecasts, with 4.5% CRPS reduction on average in the case of a lead time of 1 day. Our main aim is to achieve such an improvement without binding the model to stations, by leveraging topographical covariates. Specifically, regression coefficients are estimated by weighting the training data in relation to the topographical similarity between their station of origin and the prediction location. In our case study, this approach is found to reproduce the performance of the local model without using local historical data for calibration. We further identify that one key difficulty is that postprocessing often degrades the performance of the ensemble forecast during summer and early autumn. To mitigate, we additionally estimate on the training set whether postprocessing at a specific location is expected to improve the prediction. If not, the direct model output is used. This extension reduces the CRPS of the topographical model by up to another 1.7% on average at the price of a slight degradation in calibration. In this case, the highest improvement is achieved for a lead time of 4 days.
Studying the determinants of adverse pregnancy outcomes like stillbirth and preterm birth is of considerable interest in epidemiology. Understanding the role of both individual and community risk factors for these outcomes is crucial for planning app ropriate clinical and public health interventions. With this goal, we develop geospatial mixed effects logistic regression models for adverse pregnancy outcomes. Our models account for both spatial autocorrelation and heterogeneity between neighborhoods. To mitigate the low incidence of stillbirth and preterm births in our data, we explore using class rebalancing techniques to improve predictive power. To assess the informative value of the covariates in our models, we use posterior distributions of their coefficients to gauge how well they can be distinguished from zero. As a case study, we model stillbirth and preterm birth in the city of Philadelphia, incorporating both patient-level data from electronic health records (EHR) data and publicly available neighborhood data at the census tract level. We find that patient-level features like self-identified race and ethnicity were highly informative for both outcomes. Neighborhood-level factors were also informative, with poverty important for stillbirth and crime important for preterm birth. Finally, we identify the neighborhoods in Philadelphia at highest risk of stillbirth and preterm birth.
WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchical statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the conventional Bayes ian-synthesis framework through the consideration of a correlated error term, the capacity for online bias correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed biased and have errors that are correlated. Using the GEOS-Chem atmospheric transport model, we show that WOMBAT is able to obtain posterior means and uncertainties on non-fossil-fuel CO$_2$ fluxes from Orbiting Carbon Observatory-2 (OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019, Atmos. Chem. Phys., vol. 19). We also find that our predictions of out-of-sample retrievals from the Total Column Carbon Observing Network are, for the most part, more accurate than those made by the MIP participants. Subseque
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا