ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Evaluation of Deep Learning on Highway Driving

105   0   0.0 ( 0 )
 نشر من قبل Brody Huval
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.



قيم البحث

اقرأ أيضاً

In this paper, we present a safe deep reinforcement learning system for automated driving. The proposed framework leverages merits of both rule-based and learning-based approaches for safety assurance. Our safety system consists of two modules namely handcrafted safety and dynamically-learned safety. The handcrafted safety module is a heuristic safety rule based on common driving practice that ensure a minimum relative gap to a traffic vehicle. On the other hand, the dynamically-learned safety module is a data-driven safety rule that learns safety patterns from driving data. Specifically, the dynamically-leaned safety module incorporates a model lookahead beyond the immediate reward of reinforcement learning to predict safety longer into the future. If one of the future states leads to a near-miss or collision, then a negative reward will be assigned to the reward function to avoid collision and accelerate the learning process. We demonstrate the capability of the proposed framework in a simulation environment with varying traffic density. Our results show the superior capabilities of the policy enhanced with dynamically-learned safety module.
Humans make daily routine decisions based on their internal states in intricate interaction scenarios. This paper presents a probabilistically reconstructive learning approach to identify the internal states of multi-vehicle sequential interactions w hen merging at highway on-ramps. We treated the merging tasks sequential decision as a dynamic, stochastic process and then integrated the internal states into an HMM-GMR model, a probabilistic combination of an extended Gaussian mixture regression (GMR) and hidden Markov models (HMM). We also developed a variant expectation-maximum (EM) algorithm to estimate the model parameters and verified it based on a real-world data set. Experiment results reveal that three interpretable internal states can semantically describe the interactive merge procedure at highway on-ramps. This finding provides a basis to develop an efficient model-based decision-making algorithm for autonomous vehicles (AVs) in a partially observable environment.
In this paper, we propose an end-to-end self-driving network featuring a sparse attention module that learns to automatically attend to important regions of the input. The attention module specifically targets motion planning, whereas prior literatur e only applied attention in perception tasks. Learning an attention mask directly targeted for motion planning significantly improves the planner safety by performing more focused computation. Furthermore, visualizing the attention improves interpretability of end-to-end self-driving.
Empirical observations and theoretical studies indicate that the overall travel-time of vehicles in a traffic network can be optimized by means of ramp metering control systems. Here, we present an analysis of traffic data of the highway network of N orth-Rhine-Westfalia in order to identify and characterize the sections of the network which limit the performance, i.e., the bottlenecks. It is clarified whether the bottlenecks are of topological nature or if they are constituted by on-ramps. This allows to judge possible optimization mechanisms and reveals in which areas of the network they have to be applied.
Background and Objective: Code assignment is of paramount importance in many levels in modern hospitals, from ensuring accurate billing process to creating a valid record of patient care history. However, the coding process is tedious and subjective, and it requires medical coders with extensive training. This study aims to evaluate the performance of deep-learning-based systems to automatically map clinical notes to ICD-9 medical codes. Methods: The evaluations of this research are focused on end-to-end learning methods without manually defined rules. Traditional machine learning algorithms, as well as state-of-the-art deep learning methods such as Recurrent Neural Networks and Convolution Neural Networks, were applied to the Medical Information Mart for Intensive Care (MIMIC-III) dataset. An extensive number of experiments was applied to different settings of the tested algorithm. Results: Findings showed that the deep learning-based methods outperformed other conventional machine learning methods. From our assessment, the best models could predict the top 10 ICD-9 codes with 0.6957 F1 and 0.8967 accuracy and could estimate the top 10 ICD-9 categories with 0.7233 F1 and 0.8588 accuracy. Our implementation also outperformed existing work under certain evaluation metrics. Conclusion: A set of standard metrics was utilized in assessing the performance of ICD-9 code assignment on MIMIC-III dataset. All the developed evaluation tools and resources are available online, which can be used as a baseline for further research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا