ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Stopping is Nonparametric Variational Inference

178   0   0.0 ( 0 )
 نشر من قبل David Duvenaud
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that unconverged stochastic gradient descent can be interpreted as a procedure that samples from a nonparametric variational approximate posterior distribution. This distribution is implicitly defined as the transformation of an initial distribution by a sequence of optimization updates. By tracking the change in entropy over this sequence of transformations during optimization, we form a scalable, unbiased estimate of the variational lower bound on the log marginal likelihood. We can use this bound to optimize hyperparameters instead of using cross-validation. This Bayesian interpretation of SGD suggests improved, overfitting-resistant optimization procedures, and gives a theoretical foundation for popular tricks such as early stopping and ensembling. We investigate the properties of this marginal likelihood estimator on neural network models.



قيم البحث

اقرأ أيضاً

We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model. The benefits and negative of the GP-LVM are complementary to the Va riational Autoencoder, the former provides interpretable low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both. In order to do so we will introduce a novel approximate inference scheme inspired by the GP-LVM and the VAE. We show experimentally that the approximation allows the capacity of the generative bottle-neck (Z) of the VAE to be arbitrarily large without losing a highly interpretable representation, allowing reconstruction quality to be unlimited by Z at the same time as a low-dimensional space can be used to perform ancestral sampling from as well as a means to reason about the embedded data.
We develop a data driven approach to perform clustering and end-to-end feature learning simultaneously for streaming data that can adaptively detect novel clusters in emerging data. Our approach, Adaptive Nonparametric Variational Autoencoder (AdapVA E), learns the cluster membership through a Bayesian Nonparametric (BNP) modeling framework with Deep Neural Networks (DNNs) for feature learning. We develop a joint online variational inference algorithm to learn feature representations and clustering assignments simultaneously via iteratively optimizing the Evidence Lower Bound (ELBO). We resolve the catastrophic forgetting citep{kirkpatrick2017overcoming} challenges with streaming data by adopting generative samples from the trained AdapVAE using previous data, which avoids the need of storing and reusing past data. We demonstrate the advantages of our model including adaptive novel cluster detection without discarding useful information learned from past data, high quality sample generation and comparable clustering performance as end-to-end batch mode clustering methods on both image and text corpora benchmark datasets.
Boosting variational inference (BVI) approximates an intractable probability density by iteratively building up a mixture of simple component distributions one at a time, using techniques from sparse convex optimization to provide both computational scalability and approximation error guarantees. But the guarantees have strong conditions that do not often hold in practice, resulting in degenerate component optimization problems; and we show that the ad-hoc regularization used to prevent degeneracy in practice can cause BVI to fail in unintuitive ways. We thus develop universal boosting variational inference (UBVI), a BVI scheme that exploits the simple geometry of probability densities under the Hellinger metric to prevent the degeneracy of other gradient-based BVI methods, avoid difficult joint optimizations of both component and weight, and simplify fully-corrective weight optimizations. We show that for any target density and any mixture component family, the output of UBVI converges to the best possible approximation in the mixture family, even when the mixture family is misspecified. We develop a scalable implementation based on exponential family mixture components and standard stochastic optimization techniques. Finally, we discuss statistical benefits of the Hellinger distance as a variational objective through bounds on posterior probability, moment, and importance sampling errors. Experiments on multiple datasets and models show that UBVI provides reliable, accurate posterior approximations.
Many computationally-efficient methods for Bayesian deep learning rely on continuous optimization algorithms, but the implementation of these methods requires significant changes to existing code-bases. In this paper, we propose Vprop, a method for G aussian variational inference that can be implemented with two minor changes to the off-the-shelf RMSprop optimizer. Vprop also reduces the memory requirements of Black-Box Variational Inference by half. We derive Vprop using the conjugate-computation variational inference method, and establish its connections to Newtons method, natural-gradient methods, and extended Kalman filters. Overall, this paper presents Vprop as a principled, computationally-efficient, and easy-to-implement method for Bayesian deep learning.
Black box variational inference (BBVI) with reparameterization gradients triggered the exploration of divergence measures other than the Kullback-Leibler (KL) divergence, such as alpha divergences. In this paper, we view BBVI with generalized diverge nces as a form of estimating the marginal likelihood via biased importance sampling. The choice of divergence determines a bias-variance trade-off between the tightness of a bound on the marginal likelihood (low bias) and the variance of its gradient estimators. Drawing on variational perturbation theory of statistical physics, we use these insights to construct a family of new variational bounds. Enumerated by an odd integer order $K$, this family captures the standard KL bound for $K=1$, and converges to the exact marginal likelihood as $Ktoinfty$. Compared to alpha-divergences, our reparameterization gradients have a lower variance. We show in experiments on Gaussian Processes and Variational Autoencoders that the new bounds are more mass covering, and that the resulting posterior covariances are closer to the true posterior and lead to higher likelihoods on held-out data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا