ﻻ يوجد ملخص باللغة العربية
Proper inclusion of van der Waals (vdW) interactions in theoretical simulations based on standard density functional theory (DFT) is crucial to describe the physics and chemistry of systems such as organic and layered materials. Many encouraging approaches have been proposed to combine vdW interactions with standard approximate DFT calculations. Despite many vdW studies, there is no consensus on the reliability of vdW methods. To help further development of vdW methods, we have assessed various vdW functionals through the calculation of structural prop- erties at equilibrium, such as lattice constants, bulk moduli, and cohesive energies, for bulk solids, including alkali, alkali-earth, and transition metals, with BCC, FCC, and diamond structures as the ground state structure. These results provide important information for the vdW-related materials research, which is essential for designing and optimizing materials systems for desired physical and chemical properties.
The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe bindin
The fundamental ideas for a non-local density functional theory -- capable of reliably capturing van der Waals interaction -- were already conceived in the 1990s. In 2004, a seminal paper introduced the first practical non-local exchange-correlation
A scheme within density functional theory is proposed that provides a practical way to generalize to unrestricted geometries the method applied with some success to layered geometries [H. Rydberg, et al., Phys. Rev. Lett. 91, 126402 (2003)]. It inclu
The past few years has brought renewed focus on the physics behind the class of materials characterized by long-range interactions and wide regions of low electron density, sparse matter. There is now much work on developing the appropriate algorithm
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals