BiCh2-based superconductors (Ch: S, Se) are a new series of layered superconductor. However, mechanisms for the emergence of superconductivity in BiCh2-based superconductors have not been clarified. In this study, we have investigated crystal structure of two series of optimally-doped BiCh2-based superconductors, Ce1-xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1-ySey)2, using powder synchrotron x-ray diffraction in order to reveal the relationship between crystal structure and superconducting properties of the BiCh2-based family. We have found that an enhancement of in-plane chemical pressure would commonly induce bulk superconductivity in both systems. Furthermore, we have revealed that superconducting transition temperature for REO0.5F0.5BiCh2 superconductors could universally be determined by degree of in-plane chemical pressure.